Improved decoding of DNA for custom medical treatments

November 8, 2013 by Tova Kantrowitz
Improved decoding of DNA for custom medical treatments
The Opto-electrical effect can be used to control the passage of DNA molecules through nanopore sensors, thereby leading to more accurate sensing and sequencing of individual DNA molecules.

One day, doctors will be able to create custom medical treatment plans based on a patient's DNA, pinpointing the root of a patient's illness and making sure treatment will not cause a fatal allergic reaction. Thanks to Technion Professor Amit Meller fantasy is one step closer to being a reality

The key to bringing about this revolutionary DNA-based medicine is the quick and accurate decoding of a patient's genome. A genome is the unique sequence of special molecules along a chain of DNA that tells a cell's machinery which proteins to produce, and when. Those crucial genome molecules are called "nucleobases," and are known as adenine, thymine, cytosine, and guanine (or A, T, C, and G, for short). Prof. Meller and his team developed a way to record the As, Ts, Cs, and Gs in a person's DNA by forcing a DNA molecule to slip through a tiny hole – called a "nanopore" – in a tiny silicon chip the size of the head of a nail.
(Just how small is a nanopore? It measures anywhere between 2 and 5 nanometers, or billionths of a meter, in diameter. In comparison, a human hair measures 100 micrometers, or millionths of a meter, in diameter.)

The scientists begin by dunking the DNA molecules in a combination of water and electrically charged salt molecules. As the saltwater flows through the nanopore, it creates an electric current. When a DNA molecule passes through the pore, however, the current is disrupted. And, the amount of current disruption depends on which A, T, C, or G is in the pore.

Therefore, to read the sequence of nucleobases, a scientist simply has to find out how much each base disrupts the . With that information, he could read the sequence of DNA bases simply by logging the sequence of electrical disruptions as a DNA molecule passed through. There's a catch, though. "To do this, each base must stay in the pore long enough to make it very clear how much current it blocks, so that one can correctly identify the nucleobase," says Prof. Meller.

But DNA usually moves too quickly through the nanopores for Meller and his team to decode it. To slow the DNA down, they shone a green laser – no stronger than laser pointers used in classrooms – at the pore, which gave it a negative electric charge. The nanopore then attracted the positively charged potassium atoms in the saltwater. Those atoms, along with some of the water, moved towards the pore, creating a flow that blocked the movement of the DNA. "So, that creates a drag force on the DNA, slowing it down so that each base sites in the nanopore longer," says Prof. Meller.

This method of reading DNA sequences is still under laboratory development. But Meller envisions a future in which the chip could be built into a portable device—about the size of a smartphone—that could be brought right to the patient.

The Technion research team collaborated with colleagues at Boston University on this project. The team's results were published on the November 3 online edition of Nature Nanotechnology.

Explore further: Faster, cheaper DNA sequencing method developed

Related Stories

Faster, cheaper DNA sequencing method developed

December 20, 2009

(PhysOrg.com) -- Boston University biomedical engineers have devised a method for making future genome sequencing faster and cheaper by dramatically reducing the amount of DNA required, thus eliminating the expensive, time-consuming ...

DNA through graphene nanopores

July 12, 2010

A team of researchers from Delft University of Technology (The Netherlands) announces a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. In ...

Advance in nanotech gene sequencing technique

May 20, 2013

(Phys.org) —The allure of personalized medicine has made new, more efficient ways of sequencing genes a top research priority. One promising technique involves reading DNA bases using changes in electrical current as they ...

Nanopores light up for reading out DNA

September 12, 2013

Nanopores are ideally suited for threading DNA molecules through them, enabling the genetic code to be read out. Researchers from TU Delft want to make this technology even more powerful by equipping the pores with 'plasmonics'. ...

Nanopore opens new cellular doorway for drug transport

October 23, 2013

A living cell is built with barriers to keep things out – and researchers are constantly trying to find ways to smuggle molecules in.‬ ‪Professor Giovanni Maglia (Biochemistry, Molecular and Structural Biology, KU Leuven) ...

Recommended for you

Silicon chip with integrated laser: Light from a nanowire

February 11, 2016

Physicists at the Technical University of Munich (TUM) have developed a nanolaser, a thousand times thinner than a human hair. Thanks to an ingenious process, the nanowire lasers grow right on a silicon chip, making it possible ...

Bumpy liquid films could simplify fabrication of microlenses

February 11, 2016

Have you ever noticed that when heated a film of oil in a pan doesn't remain completely flat? Instead, it forms a wavy pattern that resembles the exterior of an orange. These sorts of deformations inspired a group of researchers ...

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.