Cosmic oddball

Nov 13, 2013
An eccentric: Images taken by the Hubble space telescope on 10 September (left) and 23 September 2013 show P/2013 P5 with six tails, which surround it like the spokes of a cartwheel. While most of the tails became less bright between the observations, tail F significantly increased in brightness. Credit: NASA / HST

Some bodies have a very disturbing effect on the order in the solar system - P/2013 P5 is one of them. With several clearly visible tails, it may look like a comet, but orbits around the Sun within the asteroid belt - and thus cannot be unequivocally classified into either of these two categories. An international team which includes scientists from the Max Planck Institute for Solar System Research has now used the Hubble space telescope to investigate this mysterious body. Their diagnosis: P/2013 P5 is an asteroid that rotates so rapidly under the radiation pressure of the Sun that it loses material into space.

Asteroids are robust celestial bodies. As they lost their volatile components, such as water, billion of years ago under the influence of the Sun, these rocky lumps change their appearance hardly at all. Although impacts of smaller bodies can add a further crater to the surface here and there, there is no fundamental metamorphosis. Comets, in contrast, are "gas and dust ejectors". Material vaporises from their surface under the influence of the Sun, sweeping along dust particles as it does so.

In 1996, this view of things began to falter: on pictures of the asteroid 1979 OW7, which had later to be renamed comet 133P/Elst-Pizarro, a clear tail could be seen. A comet in the ? Or an asteroid which ejects gas and dust? Even now it is difficult to assign these astronomical hermaphrodites, of which a mere ten or so have been identified so far, with any precision. This confusion also becomes clear in the language used: researchers talk of active asteroids or main-belt comets. The new study, headed by David Jewitt from the University of California, was intended to clarify which designation is more fitting for P/2013 P5.

"Many indications support the argument that the so-called active asteroids do not form a uniform group," says Jessica Agarwal from the Max Planck Institute for Solar System Research in Katlenburg-Lindau. It is thought that ice sublimes (i.e. converts directly from the solid to the gaseous state) from the surface of some of them. This ice probably originates from deep inside these bodies and was possibly exposed through hefty impacts. With other active asteroids, collisions have generated plumes of dust which could be seen for months as tails. "For most of these bodies, the origin of the tail is completely unclear, however," says Agarwal.

P/2013 P5 was initially a mystery as well. In the photos taken in August of this year, when it was discovered, it had already adorned itself with a tail. The more detailed look which the researchers now directed towards this eccentric being with the Hubble space telescope brought further tails to light: a total of six tails surround the body like the spokes of a cartwheel; the researchers have labelled them A to F.

"The number alone is evidence against the fact that the tails originate from collisions or impacts," says Agarwal. Six impacts within a short period of time would be rather improbable. Sublimation of ice can also be as good as excluded. Since P/2013 P5 moves at the inner edge of the asteroid belt - i.e. very close to the Sun for an asteroid - it should no longer contain any ice.

The researchers therefore guessed that the body rotates so fast that it loses mass. This motion is driven by the pressure of the sunlight. Since it hits the rugged surface at different angles, all in all it can produce a total angular momentum which accelerates its rotation more and more. At some stage, this will cause the centrifugal force at the equator to become stronger than the weak gravitational force of the body, which has a diameter of only 240 metres and is thus quite small; matter is therefore ejected from the surface.

Crucial information was provided by comparing Hubble images which were taken at two different times in September this year. "There were 13 days between the observations. During this time, our research object changed a great deal," says Agarwal. While one tail remained almost unchanged, a second one significantly increased in length and brightness. All the others became dimmer.

In computer simulations, the team of scientists succeeded in reconstructing precisely these changes. They computed the trajectories of many hypothetical dust particles of different size and different age and compared their positions with those of the observed tails. The only assumption was that the motion of the particles is affected only by and the gravitation of the Sun.

"Our computations and the actual observations are in very good agreement," was the conclusion drawn by Jessica Agarwal, who carried out the computations. "It is particularly encouraging that we were able to achieve good reproduction of the temporal development between the two days of observation."

Each of the six tails apparently originated from a different point in time, the most recent one only a few days before the Hubble photos. It was thus able to increase in brightness in the days that followed, while all the others - depending on the size of their – gradually disappeared.

Explore further: Holiday lights on the Sun: SDO imagery of a significant solar flare

More information: David Jewitt, Jessica Agarwal, Harold Weaver, Max Mutchler, and Stephen Larson, The Extraordinary Multi-Tailed Main-Belt Comet P/2013 P5, Astrophysical Journal Letters, online advance publication, November 7, 2013

add to favorites email to friend print save as pdf

Related Stories

Hubble sees asteroid spouting six comet-like tails

Nov 07, 2013

(Phys.org) —Astronomers using NASA's Hubble Space Telescope have identified what they can only describe as a never-before-seen "weird and freakish object" in the asteroid belt that looks like a rotating ...

Phaethon confirmed as rock comet by STEREO vision

Sep 10, 2013

The Sun-grazing asteroid, Phaethon, has betrayed its true nature by showing a comet-like tail of dust particles blown backwards by radiation pressure from the Sun. Unlike a comet, however, Phaethon's tail ...

Near-Earth asteroid is really a comet

Sep 10, 2013

Some things are not always what they seem—even in space. For 30 years, scientists believed a large near-Earth object was an asteroid. Now, an international team including Joshua Emery, assistant professor ...

Fossil from the depths of the solar system

Nov 11, 2013

(Phys.org) —ISON is approaching the Sun. An international observation campaign which involves ground-based telescopes, space probes and space telescopes has been running for some time and is already providing ...

Crashed asteroid has a tail that keeps getting longer

Jun 04, 2013

A strange comet-like object discovered in 2010 ended up being an asteroid that had been the victim of a head-on collision from another space rock. The object created a bit of buzz because of its mysterious ...

Recommended for you

Scientists 'map' water vapor in Martian atmosphere

5 hours ago

Russian scientists from the Space Research Institute of the Russian Academy of Sciences and the Moscow Institute of Physics and Technology (MIPT), together with their French and American colleagues, have ...

Water fleas prepared for trip to space

10 hours ago

Local 'Daphnia' waterfleas are currently being prepared by scientists at the University of Birmingham for their trip to the International Space Station (ISS), where they will be observed by astronauts.

The worst trip around the world

10 hours ago

As you celebrate the end of the year in the warmth of your home, spare a thought for the organisms riding with a third-class ticket on the International Space Station – bolted to the outside with no protection ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

billhd
1 / 5 (3) Nov 13, 2013
I don't think the rotating scenario is credible. These are collimated beams. If the object were rotating, the beams would be spread out and/or show curvature. Plasma sputtering of the rock, perhaps forming dense plasma foci, is more likely in my view. Also there is none of the putative "dust streaming behind the comet"; call the object what you will, clearly comets and asteroids are not in two neat categories. Either this discharged stuff is neutral, which by conventional theory of cometary discharge would leave a neutral tail like a comet, or it's ionized but if that is so, why is there not a single ion tail slightly offset from a neutral tail? Further, at least one of the beams is not collinear with the nucleus but is offset from another of the beams that has emanated from the nucleus. Thanks to physorg for allowing non-mainstream comments.
vendico
not rated yet Nov 25, 2013
Simca
Nov 25, 2013
This comment has been removed by a moderator.
vendico
not rated yet Nov 26, 2013
youtube watch?v=s9HPVMw1IN0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.