Computer-aided image analysis aims to offer 'second opinion' in breast tumor diagnosis

Nov 04, 2013
The quantitative image analysis workstation in the Giger laboratory for assessing breast lesions observed in MRIs, showing automated lesion segmentation, feature extraction (volumetrics, morphology, texture, kinetics), and estimation of the probability of malignancy. Credit: University of Chicago

Researchers at the University of Chicago are developing computer-aided diagnosis (CADx) and quantitative image analysis (QIA) methods for mammograms, ultrasounds and magnetic resonance images (MRIs) to identify specific tumor characteristics, including size, shape and sharpness, said lead researcher Maryellen Giger, A.N. Pritzker Professor of Radiology/Medical Physics and director of the Imaging Research Institute at the University of Chicago.

Currently, computer-aided detection provides a "second opinion" to a radiologist in locating suspicious regions within mammograms. Next, radiologists will ultimately be able to use computer-extracted lesion characteristics when performing a diagnosis to assess whether the tumor is cancerous.

The role of quantitative is expanding beyond screening and toward application of risk assessment, diagnosis, prognosis, and response to therapy, and in using data to identify how apply to disease states, Giger said.

This could lead to the comparison of a tumor's characteristics with thousands of similar cases, enabling the exploration of complex relationships among tumor characteristics across large populations, which may ultimately contribute to the design of patient-specific treatments. It could also be used to study the association between a tumor's observable characteristics and cell-level data for the emerging field of imaging and genomics, which aims to identify genes that influence the risk for disease.

While results are promising for digital , researchers are extending their analysis to breast ultrasounds and MRIs due to the need for clinical validation within a larger screening population.

Through studies between image-based characteristics and genomics, investigators will potentially be able to determine which tumor characteristics are related to and which complement genetic findings, with the ultimate goal of merging them to include both genetic and environmental contributions in clinical decisions. Researchers are now using data-mining methods to identify those potential relationships.

A paper titled "Quantitative breast image analysis for personalized medicine" describing the work by Giger was published 14 October in the SPIE Newsroom.

Explore further: Oncogenic signatures mapped in TCGA a guide for the development of personalized therapy

Provided by International Society for Optics and Photonics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Breast cancer detection improved with image processing

Nov 09, 2010

Siemens researchers in Portugal hope to detect breast cancer more reliably in the future using a new statistical detection method. The digital image processing technique reveals tiny calcium deposits in the ...

Recommended for you

Refocusing research into high-temperature superconductors

10 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

15 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

15 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0