New generation of climate models capable of simulating abrupt climate change

Nov 29, 2013
New generation of climate models capable of simulating abrupt climate change
The model implies confidence to predict future climate change

Scientists have, for the first time, demonstrated that climate models are able to simulate past abrupt changes in the Earth's climate – giving more confidence in predictions of future global climate change.

The study, which was published this month in the scientific journal PNAS, was led by Professor Sybren Drijfhout, who is Head of the Physical Oceanography Group at the University of Southampton. The team interrogated a state-of-the-art climate model, and found that it is able to recreate an abrupt cooling event similar to the 'Little Ice Age' by taking into account the ocean, atmosphere and sea ice components of the climate system.

This capability exhibited by the model implies that scientists can be more confident about predicting rapid climatic changes in the future.

Global climate has fluctuated throughout Earth's history, driven by natural variability in Earth systems and external forcing. Clues from the geological record have allowed scientists to detect abrupt transitions between different climate states, but until now they have not been able to recreate them in computer models of past climates.

"Scientists have argued that we cannot trust if they are unable to reproduce abrupt climate switches which have occurred in the past," says Professor Drijfhout, who is based at the National Oceanography Centre, Southampton (NOCS) and is also affiliated with the Royal Netherlands Meteorological Institute.

"The new generation of climate models have made an important leap forward – we are now more confident that if abrupt changes in the Earth's climate are to happen in the future, our current generation of climate models will be able to predict them."

Professor Drijfhout is now working with colleagues from the European project 'EMBRACE' to analyse these in more detail.

The model investigated in the study is the EC-Earth model, developed by a consortium of European countries together with the European Centre for Medium-range Weather Forecasts in Reading.

The 'Little Ice Age' cooling event occurred in the pre-industrial era and lasted for more than a century. It was triggered by the following mechanisms and feedbacks of the ocean-atmosphere-sea ice system: 1) sea ice extent east of Greenland increased, thereby reflecting more heat back into space and insulating the atmosphere from the ocean's heat; 2) a change in the atmospheric circulation (referred to as 'atmospheric blocking') led to northerly winds causing further increase of sea ice in the area; and 3) transport of by ocean currents led to reduced mixing where deep water normally formed, weakening the Gulf Stream in the North Atlantic. These feedbacks were sufficient to simulate the rate of change observed in the .

Explore further: Modelling the future behaviour of oceans and atmosphere

add to favorites email to friend print save as pdf

Related Stories

Modelling the future behaviour of oceans and atmosphere

Oct 28, 2013

Over the past century, the atmosphere and ocean have warmed, sea ice extent has reduced and greenhouse gases have increased. How future changes will evolve and how humankind can protect itself from possible ...

West Antarctic ice sheet formed earlier than thought

Oct 09, 2013

About 34 million years ago, Earth transitioned from a warm "greenhouse" climate to a cold "icehouse" climate, marking the transition between the Eocene and Oligocene epochs. This transition has been associated with the formation ...

Recommended for you

Melting during cooling period

5 hours ago

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Warm US West, cold East: A 4,000-year pattern

8 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

New study outlines 'water world' theory of life's origins

10 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

orti
1 / 5 (2) Nov 29, 2013
It would also be interesting to know what "external forcing" initiated and ended that short ice age if the model can do it.

More news stories

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...