New generation of climate models capable of simulating abrupt climate change

Nov 29, 2013
New generation of climate models capable of simulating abrupt climate change
The model implies confidence to predict future climate change

Scientists have, for the first time, demonstrated that climate models are able to simulate past abrupt changes in the Earth's climate – giving more confidence in predictions of future global climate change.

The study, which was published this month in the scientific journal PNAS, was led by Professor Sybren Drijfhout, who is Head of the Physical Oceanography Group at the University of Southampton. The team interrogated a state-of-the-art climate model, and found that it is able to recreate an abrupt cooling event similar to the 'Little Ice Age' by taking into account the ocean, atmosphere and sea ice components of the climate system.

This capability exhibited by the model implies that scientists can be more confident about predicting rapid climatic changes in the future.

Global climate has fluctuated throughout Earth's history, driven by natural variability in Earth systems and external forcing. Clues from the geological record have allowed scientists to detect abrupt transitions between different climate states, but until now they have not been able to recreate them in computer models of past climates.

"Scientists have argued that we cannot trust if they are unable to reproduce abrupt climate switches which have occurred in the past," says Professor Drijfhout, who is based at the National Oceanography Centre, Southampton (NOCS) and is also affiliated with the Royal Netherlands Meteorological Institute.

"The new generation of climate models have made an important leap forward – we are now more confident that if abrupt changes in the Earth's climate are to happen in the future, our current generation of climate models will be able to predict them."

Professor Drijfhout is now working with colleagues from the European project 'EMBRACE' to analyse these in more detail.

The model investigated in the study is the EC-Earth model, developed by a consortium of European countries together with the European Centre for Medium-range Weather Forecasts in Reading.

The 'Little Ice Age' cooling event occurred in the pre-industrial era and lasted for more than a century. It was triggered by the following mechanisms and feedbacks of the ocean-atmosphere-sea ice system: 1) sea ice extent east of Greenland increased, thereby reflecting more heat back into space and insulating the atmosphere from the ocean's heat; 2) a change in the atmospheric circulation (referred to as 'atmospheric blocking') led to northerly winds causing further increase of sea ice in the area; and 3) transport of by ocean currents led to reduced mixing where deep water normally formed, weakening the Gulf Stream in the North Atlantic. These feedbacks were sufficient to simulate the rate of change observed in the .

Explore further: Modelling the future behaviour of oceans and atmosphere

add to favorites email to friend print save as pdf

Related Stories

Modelling the future behaviour of oceans and atmosphere

Oct 28, 2013

Over the past century, the atmosphere and ocean have warmed, sea ice extent has reduced and greenhouse gases have increased. How future changes will evolve and how humankind can protect itself from possible ...

West Antarctic ice sheet formed earlier than thought

Oct 09, 2013

About 34 million years ago, Earth transitioned from a warm "greenhouse" climate to a cold "icehouse" climate, marking the transition between the Eocene and Oligocene epochs. This transition has been associated with the formation ...

Recommended for you

Mysterious source of ozone-depleting chemical baffles NASA

35 minutes ago

A chemical used in dry cleaning and fire extinguishers may have been phased out in recent years but NASA said Wednesday that carbon tetrachloride (CCl4) is still being spewed into the atmosphere from an unknown ...

NASA sees Tropical Storm Lowell's tough south side

7 hours ago

The south side of Tropical Storm Lowell appears to be its toughest side. That is, the side with the strongest thunderstorms, according to satellite imagery from NOAA's GOES-14 and NASA-NOAA's Suomi NPP satellites.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

orti
1 / 5 (2) Nov 29, 2013
It would also be interesting to know what "external forcing" initiated and ended that short ice age if the model can do it.