New study challenges centuries-old Amontons' laws of friction

Nov 29, 2013
New study challenges centuries-old Amontons’ laws of friction

(Phys.org) —The frictional characteristics of nanotextured surfaces cannot be fully described by the framework of Amontons' laws of friction, according to new research from the University of Bristol, published in ACS Nano.

Nanostructured surfaces are increasingly used in modern miniaturised devices, where nanosized surface features with well-defined geometry and dimensions are incorporated for tailored functionality and properties. It is thus crucially important to understand frictional properties of such nanostructured surfaces.

In order to assess data obtained on nanostructured surfaces, scientists have hitherto resorted to the laws of friction described by French physicist Guillaume Amontons in 1699 – particularly the concept of friction coefficient (that is, the ratio between friction and applied load) devised for interpreting the phenomenological macroscopic frictional behaviour of rubbing surfaces.

From violin playing to earthquakes, stick-slip frictional behaviours are widespread in macroscopic phenomena. Using a nanosized AFM (atomic force microscope) tip to scan across a nanodomed , the Bristol researchers revealed sustained stick-slip frictional instabilities under all the velocity and load regimes studied. A linear dependence between the amplitude sf of these frictional oscillations and the applied load was found, leading to the definition of the slope as the stick-slip amplitude coefficient (SSAC).

The scientists thus propose that the frictional characteristics of nanotextured surfaces cannot be fully described by the framework of Amontons' laws of friction, and that additional parameters (for examples sf and SSAC) are required when their friction, lubrication and wear properties are important considerations in related nanodevices.

Explore further: Graphite lubricates fault zones

More information: 'Sustained Frictional Instabilities on Nanodomed Surfaces: Stick–Slip Amplitude Coefficient' by Benoit Quignon, Georgia A. Pilkington, Esben Thormann, Per M. Claesson, Michael N. R. Ashfold, Davide Mattia, Hannah Leese, Sean A. Davis and Wuge H. Briscoe in ACS Nano: pubs.acs.org/doi/abs/10.1021/nn404276p

Related Stories

Finnish researchers find explanation for sliding friction

May 29, 2012

Friction is a key phenomenon in applied physics, whose origin has been studied for centuries. Until now, it has been understood that mechanical wear-resistance and fluid lubrication affect friction, but the fundamental origin ...

Graphite lubricates fault zones

May 07, 2013

Graphite is known to be a low-friction material, and rocks rich in graphite are often found in fault zones. Oohashi et al. conducted laboratory studies to determine how much graphite is needed to reduce the frictional strength ...

Controlling friction by tuning van der Waals forces

Jul 19, 2013

For a car to accelerate there has to be friction between the tire and the surface of the road. The amount of friction generated depends on numerous factors, including the minute intermolecular forces acting between the two ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...