Bacteria use lethal cytotoxins to evade antibiotic treatment

November 18, 2013
The figure shows the bacterial 70S ribosome with the cleavage point for the cytotoxin VapC20 marked with red. To the right is transfer RNA, which is cleaved by a similar mechanism in the pathogenic organism Shigella flexneri. Behind this is an RNA gel showing the actual cleavage reaction in the ribosome. Credit: Ditlev E. Brodersen

In spite of the fact that the first antibiotics were discovered almost a century ago, infectious diseases such as tuberculosis, encephalitis and meningitis are still serious diseases for humans in the twenty-first century. The World Health Organization (WHO) estimates that there are more than 8 million new cases of tuberculosis per year on a global scale, and that more than 300,000 of these are due to multidrug-resistant strains that are not only difficult to treat, but are also emerging rapidly in regions such as Eastern Europe.

Bacterial tolerance is not just due to resistance, but also to the formation of persistent cells that have gone into a dormant state where they are no longer sensitive to antibiotics. On the molecular level, this process is controlled by a number of advanced cytotoxins produced by the bacteria themselves in order to survive. In Mycobacterium tuberculosis – the organism that causes tuberculosis – there are no fewer than 88 such toxins, all of which presumably help the organism to survive.

In a new article in the renowned journal Nature Communications, an international team of researchers with the participation of the Department of Molecular Biology and Genetics, Aarhus University, has revealed the mechanism behind one of these toxins – VapC20. It turns out that when the toxin is activated, it destroys the 's own protein 'factory' (the ribosome) by cleavage. The bacteria are thereby unable to produce proteins in the short term, and thus avoid the effect of antibiotics that also often attack the ribosome.

When treatment with is completed, the 'wake up' and are ready to synthesise new ribosomes. Surprisingly, it appears that the location in the ribosome that is cleaved by VapC20 is the same place that is destroyed by the strong cytotoxins α-sarcin and ricin, which are found in plants such as castor beans and are twice as venomous as cobra snake poison.

Further analysis of the cleavage point in the ribosome also shows that the mechanism is presumably general for a number of the many toxins, and the new knowledge could therefore be used in future to develop new ways of treating pathogenic bacteria by impairing their ability to use such cytotoxins.

Explore further: X-rays reveal the self-defence mechanisms of bacteria

More information: Winther, KS, Brodersen, DE, Brown, AK, and Gerdes, K (2013) VapC20 of Mycobacterium tuberculosis Cleaves the Sarcin Ricin Loop of 23S rRNA, Nature Communications.

Related Stories

X-rays reveal the self-defence mechanisms of bacteria

September 14, 2012

A research group at Aarhus University has gained unique insight into how bacteria control the amount of toxin in their cells. The new findings can eventually lead to the development of novel forms of treatment for bacterial ...

This image could lead to better antibiotics

June 28, 2013

( —This may look like a tangle of squiggly lines, but you're actually looking at a molecular machine called a ribosome. Its job is to translate DNA sequences into proteins, the workhorse compounds that sustain ...

Superbugs may have a soft spot, after all

February 26, 2013

The overuse of antibiotics has created strains of bacteria resistant to medication, making the diseases they cause difficult to treat, or even deadly. But now a research team at the University of Rochester has identified ...

Scientists discover how some bacteria survive antibiotics

April 30, 2008

Researchers at the University of Illinois at Chicago have discovered how some bacteria can survive antibiotic treatment by turning on resistance mechanisms when exposed to the drugs. The findings, published in the April 24 ...

Recommended for you

How Frankenstein saved humankind from probable extinction

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." ...

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 18, 2013
This could also lead to an antidote for ricin.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.