ATLAS sees Higgs boson decay to fermions

Nov 28, 2013 by Sylvie Brunet, Abha Eli Phoboo
The ATLAS detector, open during a recent technical stop. Credit: Maximilien Brice/CERN

The ATLAS experiment at CERN has released preliminary results that show evidence that the Higgs boson decays to two tau particles. Taus belong to a group of subatomic particles called the fermions, which make up matter. This result – measured at 4.1 sigma on the 5-point scale particle physicists use to determine the certainty of a result – is the first evidence for a Higgs decay to fermions.

On 4 July 2012, the ATLAS and CMS experiments at CERN announced the discovery of a new particle, which was later confirmed to be a Higgs boson.

For physicists, the discovery meant the beginning of a quest to find out what the new particle was, if it fit in the Standard Model, our current of nature in , or if its properties could point to new physics beyond that model. An important property of the Higgs boson that ATLAS physicists are trying to measure is how it decays.

The Higgs boson lives only for a short time and disintegrates into other . The various possibilities of the final states are called decay modes. So far, ATLAS physicists had found evidence that the Higgs boson decays into different types of gauge bosons - the kind of elementary particles that carry forces. The other family of fundamental particles, the , make up matter. The tau is a fermion and behaves like a very massive electron.

Graphical representation of a Higgs boson decaying to two tau particles in the ATLAS detector. The taus decay into an electron (blue line) and a muon (red line) Credit: ATLAS

The Brout-Englert-Higgs mechanism was first proposed to describe how gauge bosons acquire mass. But the Standard Model predicts that fermions also acquire mass in this manner, so the Higgs boson could decay directly to either bosons or fermions. The new preliminary result from ATLAS shows clear evidence that the Higgs boson indeed does decay to fermions, consistent with the rate predicted by the Standard Model.

This important finding was made possible through careful analysis of data produced by the LHC during its first run. Only with new data will physicists be able to determine if the compatibility remains or if other new models become viable. Fortunately, the next LHC run, which begins in 2015, is expected to produce several times the existing data sample. In addition, the proton collisions will be at higher energies, producing Higgs bosons at higher rates.

ATLAS' broad physics programme, which includes precision measurements of the Higgs boson, will continue to test the Standard Model. The years ahead will be exciting for particle physics as – the LHC experiments have found new territory that they have only just begun to explore.

Explore further: The Higgs boson: One year on

More information: atlas.ch/news/2013/higgs-into-fermions.html

Related Stories

The Higgs boson: One year on

Jul 05, 2013

A year ago today, physicists from the ATLAS and CMS experiments at CERN proudly announced the discovery of a new boson looking very much like the Higgs boson.

Could 'Higgsogenesis' explain dark matter?

Oct 22, 2013

(Phys.org) —The recently discovered Higgs boson is best known for its important role in explaining particle mass. But now some physicists are wondering if the Higgs could have played an equally significant ...

'God Particle' Nobel ticks boson box for CERN

Oct 08, 2013

The reflected glory of a Nobel prize for the minds behind the "God particle" sent champagne corks popping at Europe's top physics lab CERN Tuesday, vindicating its landmark discovery a year ago.

12 matter particles suffice in nature

Dec 13, 2012

How many matter particles exist in nature? Particle physicists have been dealing with this question for a long time. The 12 matter particles contained in the standard model of particle physics? Or are there ...

Recommended for you

Better thermal-imaging lens from waste sulfur

8 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

ant_oacute_nio354
1 / 5 (8) Dec 03, 2013
The Higgs doesn't exist.
The mass is a kind of electric dipole moment.
kilogram = Coulomb x meter

Antonio Saraiva
Liquid1474
1 / 5 (1) Dec 22, 2013
The Higgs doesn't exist.
The mass is a kind of electric dipole moment.
kilogram = Coulomb x meter

Antonio Saraiva


Skippy you keep saying that a lot. What the hell does it mean?


Ever tried Google, holmes? HINT: Gotta actually read more than the search result titles
George_Rajna
not rated yet Jan 06, 2014
The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. https://www.acade..._Gravity

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...