How argonaute proteins intervene in the gene regulation process

November 14, 2013
How Argonaute Proteins Intervene in the Gene Regulation Process
The puzzle shown symbolises the four principle domains from which human Argonaute proteins are built and the need for them to be combined correctly to form a functional Ago2 protein. The PIWI domain, shown in green, was previously thought to be responsible for slicing messenger RNA. Shown in blue is the N domain, where Heidelberg scientists have now identified two additional important motifs. Credit: Dr. Dirk Grimm

Bioscientists at Heidelberg University have studied the function of certain proteins, known as Argonaute (Ago) proteins, in the process of gene regulation. They sought to understand why only the Ago2 protein is able to target and directly turn off genes in humans, while the closely related Ago3 protein is not. Using a new investigative method, researchers working with Dr. Dirk Grimm were able to identify for the first time two "motifs" of this protein that, when properly combined with an already known protein domain, give Ago2 its gene-silencing capability. The researchers hope that the results will open up new avenues in basic biological and medical research toward artificially induced gene silencing.

With the aid of their special "directed evolution" method, the Heidelberg scientists were able to generate a large library of "hybrids" from human Ago2 and its close cousin Ago3. Individual proteins with the characteristics – the phenotype – of Ago2 were isolated from these chimaeras. A comparative bioinformatic analysis of the candidates with the strongest Ago2 phenotype yielded an "astonishing result", according to Dr. Grimm. The researchers from Heidelberg University's "CellNetworks" Cluster of Excellence observed a recurring accumulation of two short motifs in a special domain of the Argonaute protein, the N terminus at the end of the protein.

"This result was unexpected since the prevailing view holds that a completely different and known protein domain called the PIWI domain is solely responsible for the gene-regulating properties of Ago2," explains Dr. Grimm. "We were able to show, however, that only the correct combination of these three protein components gives Ago2 the ability to turn off genes in a special way." Gene silencing is based on what is known as RNA interference. Ago2, also called the slicer, slices the messenger RNA that transports the data stored in the DNA and translates it into proteins.

According to lead author Nina Schürmann, the results of this research provide new insight into Argonaute proteins. The results demonstrate that special Ago functions are not determined by isolated , but through the complex interaction of multiple activating or inhibiting domains. The researchers now hope that they will be able to generate completely new protein characteristics in future and, as a result, possibly even further improve RNA interference processes, according to Dr. Grimm. To advance the research further, the Heidelberg scientists generated a library of chimaeras of all four human Argonaute proteins as well as developed analysis software that can also benefit other users. In cooperation with Prof. Dr. Robert Russell and Dr. Leonardo Trabuco, likewise researchers in the "CellNetworks" Cluster of Excellence, a structure of human Ago3 could be modelled for the first time.

Explore further: Researchers discover how microRNAs control protein synthesis

More information: N. Schürmann, L.G. Trabuco, Ch. Bender, R.B. Russell & D. Grimm: "Molecular dissection of human Argonaute proteins by DNA shuffling," Nature Structural & Molecular Biology 20, 818-826 (2013), DOI: 10.1038/nsmb.2607

Related Stories

Researchers discover how microRNAs control protein synthesis

July 9, 2007

While most RNAs work to create, package, and transfer proteins as determined by the cell’s immediate needs, miniature pieces of RNA, called microRNAs (miRNAs) regulate gene expression. Recently, researchers from the University ...

Human Argonaute proteins: To slice or not to slice?

June 6, 2013

What makes one Argonaute a slicer and another one not? Human Argonaute proteins are key players in the gene regulation process known as RNA interference, RNAi. Professor Joshua-Tor's group of Cold Spring Harbor Laboratory ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.