New study determines more accurate method to date tropical glacier moraines

November 19, 2013
The Quelccaya Ice Cap, the world's largest tropical ice sheet, is rapidly melting. Credit: Meredith Kelly

A Dartmouth-led team has found a more accurate method to determine the ages of boulders deposited by tropical glaciers, findings that will likely influence previous research of how climate change has impacted ice masses around the equator.

The study appears in the journal Quaternary Geochronology.

Scientists use a variety of dating methods to determine the ages of glacial moraines around the world, from the poles where are at to the tropics where glaciers are high in the mountains. Moraines are sedimentary deposits that mark the past extents of glaciers. Since glaciers respond sensitively to climate, especially at high latitudes and high altitudes, the timing of glacial fluctuations marked by moraines can help scientists to better understand past and how glaciers may respond to future changes.

In the tropics, glacial scientists commonly use beryllium-10 surface exposure dating. Beryllium-10 is an isotope of beryllium produced when cosmic rays strike bedrock that is exposed to air. Predictable rates of decay tell scientists how long ago the isotope was generated and suggest that the rock was covered in ice before then. Elevation, latitude and other factors affect the rate at which beryllium-10 is produced, but researchers typically use rates taken from calibration sites scattered around the globe rather than rates locally calibrated at the sites being studied.

Dartmouth College-led researchers analyzed beryllium-10 concentrations in moraine boulders deposited by the Quelccaya Ice Cap. Credit: Meredith Kelly

The Dartmouth-led team looked at beryllium-10 concentrations in moraine boulders deposited by the Quelccaya Ice Cap, the largest ice mass in the tropics. Quelccaya, which sits 18,000 feet above sea level in the Peruvian Andes, has retreated significantly in recent decades. The researchers determined a new locally calibrated production rate that is at least 11 percent to 15 percent lower than the traditional global production rate.

"The use of our locally calibrated beryllium-10 production rate will change the surface exposure ages reported in previously published studies at low latitude, high altitude sites and may alter prior paleoclimate interpretations," said Assistant Professor Meredith Kelly, the study's lead author and a glacial geomorphologist at Dartmouth.

The new production rate yields beryllium-10 ages that are older than previously reported, which means the boulders were exposed for longer than previously estimated. Prior studies suggested glaciers in the Peruvian Andes advanced during early Holocene time 8,000 -10,000 years ago, a period thought to have been warm but perhaps wet in the Andes. But the new production rate pushes back the -10 ages to 11,000 -12,000 years ago when the tropics were cooler and drier. Also during this time, glaciers expanded in the northern hemisphere, which indicates a relationship between the climate mechanisms that caused cooling in the northern hemisphere and southern tropics.

The findings suggest the new production rate should be used to deliver more precise ages of moraines in low-latitude, high-altitude locations, particularly in the tropical Andes. Such precision can help scientists to more accurately reconstruct past glacial and climatic variations, Kelly said.

Explore further: Southern glaciers grow out of step with North

Related Stories

Southern glaciers grow out of step with North

April 30, 2009

The vast majority of the world’s glaciers are retreating as the planet gets warmer. But a few, including ones south of the equator, in South America and New Zealand, are inching forward.

Swiss glacier finely tuned to climate changes

June 6, 2011

(PhysOrg.com) -- During the last ice age, the Rhone Glacier was the dominant glacier in the Alps, covering a significant part of Switzerland. Over the next 11,500 years or so, the glacier, which forms the headwaters of the ...

Causes of melting tropical glaciers identified

June 20, 2011

The causes of melting of tropical glaciers over the past 10 000 years have at last been unveiled by a team of French researchers from CNRS, CEA, IRD and Universite Joseph Fourrier, together with a US researcher from the University ...

Greenland's pronounced glacier retreat not irreversible

January 31, 2012

In recent decades, the combined forces of climate warming and short-term variability have forced the massive glaciers that blanket Greenland into retreat, with some scientists worrying that deglaciation could become irreversible. ...

Recommended for you

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

Quantifying the impact of volcanic eruptions on climate

August 31, 2015

Large volcanic eruptions inject considerable amounts of sulphur in the stratosphere which, once converted into aerosols, block sun rays and tend to cool the surface of the Earth down for several years. An international team ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.