'White graphene' halts rust in high temps

Oct 07, 2013 by Mike Williams
‘White graphene’ halts rust in high temps
Rice University researchers have discovered that sheets of hexagonal boron nitride (h-BN) as little as one atom thick can protect metals in harsh environments at up to 1,100 degrees Celsius. The top image shows uncoated nickel oxidized after exposure to high temperature in an oxygen-rich environment. The second shows nickel exposed to the same conditions with a 5-nanometer coat of h-BN. The third shows electron microscope images of two, three, four and many-layer h-BN films. The bottom image of an h-BN sheet shows the hexagonal arrangement of nitrogen (bright) and boron atoms. Credit: Zheng Liu

(Phys.org) —Atomically thin sheets of hexagonal boron nitride (h-BN) have the handy benefit of protecting what's underneath from oxidizing even at very high temperatures, Rice University researchers have discovered.

One or several layers of the material sometimes called "white graphene" keep materials from oxidizing – or rusting—up to 1,100 degrees Celsius (2,012 degrees Fahrenheit), and can be made large enough for industrial applications, they said.

The Rice study led by materials scientists Pulickel Ajayan and Jun Lou appears in the online journal Nature Communications.

Oxidation prevention is already big business, but no products available now work on the scale of what the Rice lab is proposing. The researchers see potential for very large sheets of h-BN only a few atoms thick made by scalable vapor deposition methods.

"We think this opens up new opportunities for two-dimensional material," said Lou, an associate professor of mechanical engineering and materials science. "Everybody has been talking about these materials for electronic or photonic devices, but if this can be realized on a large scale, it's going to cover a broad spectrum of applications."

Lou said ultrathin h-BN protection might find a place in turbines, jet engines, oil exploration or underwater or other harsh environments where minimal size and weight would be an advantage, though wear and abrasion could become an issue and optimum thicknesses need to be worked out for specific applications.

It's effectively invisible as well, which may make it useful for protecting solar cells from the elements, he said. "Essentially, this can be a very useful structural material coating," Lou said.

The researchers made small sheets of h-BN via chemical (CVD), a process they said should be scalable for industrial production. They first grew the thin material on nickel foil and found it withstood high temperature in an oxygen-rich environment. They also grew h-BN on graphene and found they could transfer sheets of h-BN to copper and steel with similar results.

"What's amazing is that these layers are ultrathin and they stand up to such ultrahigh temperatures," Ajayan said. "At a few nanometers wide, they're a totally non-invasive coating. They take almost no space at all."

Explore further: 2-D electronics take a step forward: Team makes semiconducting films for atom-thick circuits

More information: www.nature.com/ncomms/2013/131004/ncomms3541/full/ncomms3541.html

Related Stories

Researchers make graphene hybrid

Mar 01, 2010

Rice University researchers have found a way to stitch graphene and hexagonal boron nitride (h-BN) into a two-dimensional quilt that offers new paths of exploration for materials scientists.

Diamonds, nanotubes find common ground in graphene

May 28, 2013

What may be the ultimate heat sink is only possible because of yet another astounding capability of graphene. The one-atom-thick form of carbon can act as a go-between that allows vertically aligned carbon ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

23 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Pkunk_
not rated yet Oct 08, 2013
This could be the next-generation shielding for spacecraft ?
Wonder how good it is at stopping cosmic rays
FMA
not rated yet Oct 08, 2013
There are many industrial products that claim to have a BN coating, not not sure if it is the same.
RealScience
not rated yet Oct 09, 2013
@FMA - most of the industrial coatings are cubic boron nitride (c-BN) rather than hexagonal boron nitride (h-BN).

In the periodic table boron is just to left of carbon and nitrogen is just to the right, so boron nitride behaves in some ways like carbon.

Cubic boron nitride has a similar structure to diamond (a 3D crystalline form of carbon) and extremely hard (almost as hard as diamond), hence its use as a tool coating where it prevents wear.

Hexagonal boron nitride has a similar structure to graphite (a form of carbon whose 3D form is a weakly-bonded stack of very strong 2D layers), and like graphite it is soft and used as a lubricant because the layers slide on one another.

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...