Eliminating unexplained traffic jams

Oct 28, 2013 by Larry Hardesty
Eliminating unexplained traffic jams

Everybody's experienced it: a miserable backup on the freeway, which you think must be caused by an accident or construction, but which at some point thins out for no apparent reason.

Such "traffic flow instabilities" have been a subject of scientific study since the 1930s, but although there are a half-dozen different ways to mathematically model them, little has been done to prevent them.

At this month's IEEE Conference on Intelligent Transport Systems, Berthold Horn, a professor in MIT's Department of Electrical Engineering and Computer Science, presented a new for alleviating traffic flow instabilities, which he believes could be implemented by a variation of the adaptive systems that are an option on many of today's high-end cars.

A with adaptive cruise control uses sensors, such as radar or laser rangefinders, to monitor the speed and distance of the car in front of it. That way, the driver doesn't have to turn the cruise control off when traffic gets backed up: The car will automatically slow when it needs to and return to its programmed speed when possible.

Counterintuitively, a car equipped with Horn's system would also use sensor about the distance and of the car behind it. A car that stays roughly halfway between those in front of it and behind it won't have to slow down as precipitously if the car in front of it brakes; but it will also be less likely to pass on any unavoidable disruptions to the car behind it. Since the system looks in both directions at once, Horn describes it as "bilateral control."

Traffic flow instabilities arise, Horn explains, because variations in velocity are magnified as they pass through a lane of traffic. "Suppose that you introduce a perturbation by just braking really hard for a moment, then that will propagate upstream and increase in amplitude as it goes away from you," Horn says. "It's kind of a chaotic system. It has positive feedback, and some little perturbation can get it going."

A sample run of Horn's traffic simulator. The bilateral-control algorithm is switched on at the one-minute mark. Credit: Berthold Horn

Doing the math

Horn hit upon the notion of bilateral control after suffering through his own share of inexplicable backups on Massachusetts' Interstate 93. Since he's a computer scientist, he built a computer simulation to test it out.

The simulation seemed to bear out his intuition, but to publish, he needed mathematical proof. After a few false starts, he found that bilateral control could be modeled using something called the damped-wave equation, which describes how oscillations, such as waves propagating through a heavy fluid, die out over distance. Once he had a mathematical description of his dynamic system, he used techniques standard in control theory—in particular, the Lyapunov function—to demonstrate that his algorithm could stabilize it.

Horn's proof accounts for several variables that govern real-life traffic flow, among them drivers' reaction times, their desired speed, and their eagerness to reach that speed—how rapidly they accelerate when they see gaps opening in front of them. Horn found that the literature on instabilities had proposed a range of values for all those variables, and within those ranges, his algorithm works very efficiently. But in fact, for any plausible set of values, the algorithm still works: All that varies is how rapidly it can smooth out disruptions.

Horn's algorithm works, however, only if a large percentage of cars are using it. And laser rangefinders and radar systems are relatively costly pieces of hardware, which is one of the reasons that has remained a high-end option.

Digital cameras, on the other hand, have become extremely cheap, and many cars already use them to monitor drivers' blind spots. "There are several techniques," Horn says. "One is using binocular stereo, where you have two cameras, and that allows you to get distance as well as relative velocity. The disadvantage of that is, well, two cameras, plus alignment. If they ever get out of alignment, you have to recalibrate them."

Time to impact

Horn's chief area of research is computer vision, and his group previously published work on extracting information about distance and velocity from a single camera. "We've developed monocular methods that allow you to very accurately get the ratio of distance to velocity," Horn says—a ratio known in transportation studies as "time to contact," since it captures information about the imminence of collision. "Strangely, while it's, from a monocular camera, difficult to get distance accurately without additional information, and it's difficult to get velocity accurately without additional information, the ratio can be had." In ongoing work, Horn is investigating whether his algorithm can be adapted so that it uses only information about time to contact, rather than absolute information about speed and distance.

"This is a beautiful paper," says Mohan Trivedi, a professor of and computer science at the University of California at San Diego, and director of the school's Laboratory for Intelligent and Safe Automobiles. "It's a welcome addition to our literature, and I'm looking forward to other people picking up on this and pushing it forward."

The real obstacle to the system's adoption, Trivedi says, is not technical but psychological. "Generally, drivers really worry about what is good for me, rather than what is good for the whole platoon or the community of vehicles that are moving on this road with me," he says.

But, Trivedi adds, his own group is investigating the use of rearview cameras for safety applications, rather than applications that address questions of collective welfare. "A lot of times, we might be intending to change lanes to overtake, to exit, to merge, and in those cases, we may not be aware of things that can come from behind us," he says. "We are developing these large, wide-angle field-of-view systems that look behind and can fuse motion cues and appearance cues to look at those surrounding criticalities." If such systems catch on, Trivedi says, Horn's algorithm could piggyback on top of them, without increasing cars' sticker prices.

Explore further: GM says almost-driverless cars coming by 2020

More information: "Optimization of Lyapunov Invariants in Verification of Software Systems" ieeexplore.ieee.org/xpl/articl… tp=&arnumber=6416001

Related Stories

Five new features that could be on your next car

Jul 05, 2013

Cameras that check around the car for pedestrians. Radar that stops you from drifting out of your lane. An engine able to turn off automatically at traffic lights to conserve fuel.

BMW shows hands-free driving on Autobahn (w/ video)

Jan 24, 2012

(PhysOrg.com) -- Move over, Google, or better still, stay off the Autobahn, best not to interfere with the main show, which now stars BMW and its technology feats with self-driving cars. BMW has been drawing ...

Recommended for you

Student develops filter for clean water around the world

13 hours ago

Roughly 780 million people around the world have no access to clean drinking water. According to the World Health Organization (WHO), 3.4 million people die from water-related diseases every year. ETH student Jeremy Nussbaumer ...

Minimising drag to maximise results

17 hours ago

One of the most exciting parts of the Tour de France for spectators is the tactical vying for spots in the breakaway group at the front of the pack.

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 28, 2013
That is a good idea! i have often thought these things are caused by people getting too close to the car in front and then breaking causing following cars to break a little harder, it's a domino effect. this could be what's needed
1 / 5 (1) Oct 28, 2013
I just fear what the effect will be when there is that one who will tailgate you whatever you do. Then the computer controlled car would try to match the distances, resulting it also tailgating the previous car.
1 / 5 (3) Oct 28, 2013
But that doesn't account for the new cars getting on the freeway.
2.3 / 5 (3) Oct 28, 2013
Watching a freeway from a high floor of an office building I have seen many slowdowns begin not from "instability", but from crazy people swerving across lanes, or when 100 cars serge onto the freeway after a business conference lets out, or when some bozo leaves a couch in the middle and police have to stop traffic so it can be removed. Once created, the slowdown doesn't stay in one place either, it "travels" against the flow so when you experience it it may not be anywhere near what created it.
2.3 / 5 (3) Oct 28, 2013
The assumption is computer control will improve traffic flow and be safer.
Who will be responsible for the deaths and injuries caused by computer failures?
I suspect govts will bow to pressure and hold the computer companies immune from any liability for the good of society.
1 / 5 (3) Oct 28, 2013
Simpler: just issue fines for following the car in front of you at closer than 5 car lengths for longer than 3 seconds. Enforce vigorously. Use the fines collected for more enforcement. When compliance becomes commonplace, then the chaotic positive feedback loop described here would be greatly attenuated. The only reason we have these problems is there is no political will to enforce good driver behavior. It's actually an easy problem to solve if we're interested in it.