Unexpected result shows that in some cases, pulling apart makes cracks in metal fuse together

October 9, 2013 by David L. Chandler

It was a result so unexpected that MIT researchers initially thought it must be a mistake: Under certain conditions, putting a cracked piece of metal under tension—that is, exerting a force that would be expected to pull it apart—has the reverse effect, causing the crack to close and its edges to fuse together.

The surprising finding could lead to self-healing that repair incipient damage before it has a chance to spread. The results were published in the journal Physical Review Letters in a paper by graduate student Guoqiang Xu and professor of materials science and engineering Michael Demkowicz.

"We had to go back and check," Demkowicz says, when "instead of extending, [the crack] was closing up. First, we figured out that, indeed, nothing was wrong. The next question was: 'Why is this happening?'"

The answer turned out to lie in how grain boundaries interact with cracks in the crystalline of a metal—in this case nickel, which is the basis for "superalloys" used in extreme environments, such as in deep-sea oil wells.

By creating a computer model of that microstructure and studying its response to various conditions, "We found that there is a mechanism that can, in principle, close cracks under any applied stress," Demkowicz says.

Most metals are made of tiny crystalline grains whose sizes and orientations can affect strength and other characteristics. But under certain conditions, Demkowicz and Xu found, stress "causes the microstructure to change: It can make grain boundaries migrate. This grain boundary migration is the key to healing the crack," Demkowicz says.

The video will load shortly
A computer simulation of the molecular stucture of a metal alloy, showing the boundaries between microcystalline grains (white lines forming hexagons), shows a small crack (dark horizontal bar just right of bottom center) that mends itself as the metal is put under stress. This simulation was one of several the MIT researchers used to uncover this new self-healing phenomenon. Credit: GUOQIANG XU AND MICHAEL DEMKOWICZ

The very idea that crystal could migrate within a solid metal has been extensively studied within the last decade, Demkowicz says. Self-healing, however, occurs only across a certain kind of boundary, he explains—one that extends partway into a grain, but not all the way through it. This creates a type of defect is known as a "disclination."

Disclinations were first noticed a century ago, but had been considered "just a curiosity," Demkowicz says. When he and Xu found the crack-healing behavior, he says, "it took us a while to convince ourselves that what we're seeing are actually disclinations."

These defects have intense stress fields, which "can be so strong, they actually reverse what an applied load would do," Demkowicz says: In other words, when the two sides of a cracked material are pulled apart, instead of cracking further, it can heal. "The stress from the disclinations is leading to this unexpected behavior," he says.

Having discovered this mechanism, the researchers plan to study how to design metal alloys so cracks would close and heal under loads typical of particular applications. Techniques for controlling the microstructure of alloys already exist, Demkowicz says, so it's just a matter of figuring out how to achieve a desired result.

"That's a field we're just opening up," he says. "How do you design a microstructure to self-heal? This is very new."

The technique might also apply to other kinds of failure mechanisms that affect metals, such as plastic flow instability—akin to stretching a piece of taffy until it breaks. Engineering metals' microstructure to generate disclinations could slow the progression of this type of failure, Demkowicz says.

Such failures can be "life-limiting situations for a lot of materials," Demkowicz says, including materials used in aircraft, , and other critical industrial applications. Metal fatigue, for example—which can result from an accumulation of nanoscale cracks over time—"is probably the most common failure mode" for structural metals in general, he says.

"If you can figure out how to prevent those nanocracks, or heal them once they form, or prevent them from propagating," Demkowicz says, "this would be the kind of thing you would use to improve the lifetime or safety of a component."

William Gerberich, a professor of chemical engineering and at the University of Minnesota who was not involved in this research, says that the significance of disclinations in materials was initially reassessed a few years ago. Xu and Demkowicz, he says, "have taken this one step further and suggested that wedge dislocations, in conjunction with stress-driven grain boundary migration, could actually heal . This is indeed provocative [and] may be a plausible and exciting pursuit."

Explore further: Simulations reveal formation of some glassy materials like the setting of a bowl of gelatin

Related Stories

Nuclear engineering researchers revealed fundamentals

October 2, 2013

The radiation materials science group at the Texas A&M University led by Dr. Lin Shao, associate professor of nuclear engineering, has made great progress toward understanding the fundamentals of defects in nuclear materials. ...

Making ceramics that bend without breaking

September 26, 2013

Ceramics are not known for their flexibility: they tend to crack under stress. But researchers from MIT and Singapore have just found a way around that problem—for very tiny objects, at least.

Recommended for you

Room-temp superconductors could be possible

September 29, 2016

Superconductors are the holy grail of energy efficiency. These mind-boggling materials allow electric current to flow freely without resistance. But that generally only happens at temperatures within a few degrees of absolute ...

Creating antimatter via lasers?

September 27, 2016

Dramatic advances in laser technologies are enabling novel studies to explore laser-matter interactions at ultrahigh intensity. By focusing high-power laser pulses, electric fields (of orders of magnitude greater than found ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.