Ultrafast laser pulses and precisely cut optical crystals could control quantum properties of light

Oct 09, 2013
Ultrafast laser pulses and precisely cut optical crystals could control quantum properties of light
A map of the correlation between a signal photon, with wavelength λs (x axis), and an idler photon at λi (y axis). Some specific signal wavelengths, such as 807 nanometers, correspond to two different idler wavelengths with a high probability. Credit: 2013 A*STAR Data Storage Institute

Quantum optics scientists and engineers are striving to harness the properties of small packets of light called photons to improve communications and computational devices. Vital to these efforts is an invisible connection between pairs of photons; understanding this effect is therefore crucial. By mapping the connections, researchers at the A*STAR Data Storage Institute, Singapore, and in Russia have shown that the properties of each photon in a pair, which were created in the same time and place, are governed by statistics. The maps could aid future quantum optics engineering efforts.

Many of the early experiments studying the quantum properties of photons used a process called spontaneous parametric down-conversion (SPDC). In SPDC, a striking the front of a slab of a crystalline material with specific nonlinear optical properties decays into two lower-energy photons. These photons, referred to as the signal and the idler, are 'entangled'—intimately coupled in a way that classical physics cannot describe.

The properties of the photons are determined not when they leave the back of the slab, but when a measurement is made on one of them. At this moment, the properties of the other photon are immediately determined, even though the two may be separated by a long distance.

The situation is more complicated, however, when short laser pulses are used to control the timing of the process. The SPDC emission from the back of the slab consists of photon pairs, or biphotons, across a broad spectrum of wavelengths. A full understanding of the strength of the connection between any two photons in this complex emission profile is important for optimizing the entangled-photon source, and thus improving optical tests of quantum mechanics.

Dmitry Kalashnikov and co-workers fully plotted the correlations of SPDC-generated photons by carefully tailoring the properties of a nonlinear crystal of ?-barium borate and the parameters of the ultrafast laser exciting it. "We fixed the frequency of the signal photon and scanned the frequency of the idler photon to find the maximum correlation between the two," explains Kalashnikov (see image). "We found that the maximum of the correlation is reached at two distinct frequencies." This unusual 'double-peak' structure occurs only under certain conditions—when the crystal is thick enough (5 millimeters) and the exciting laser pulse length is short (less than 110 femtoseconds).

"The effect is harmful as it decreases the quality of entanglement," says Kalashnikov. "Scientists and engineers will have to pay attention to this when constructing their setups and devices in the future."

Explore further: Quantum physics just got less complicated

More information: Kalashnikov, D. A., Fedorov, M. V. & Krivitsky, L. A. Experimental observation of double-peak structure of coincidence spectra in ultrafast spontaneous parametric down-conversion, Physical Review A 87, 013803 (2013). dx.doi.org/10.1103/PhysRevA.87.013803

add to favorites email to friend print save as pdf

Related Stories

Optics: Statistics light the way

May 22, 2013

Millions of years of evolution have molded our eyes into highly sensitive optical detectors, surpassing even many man-made devices. Now, Leonid Krivitsky and his co-workers at the A*STAR Data Storage Institute ...

What if quantum physics worked on a macroscopic level?

Jul 25, 2013

Quantum physics concerns a world of infinitely small things. But for years, researchers from the University of Geneva (UNIGE), Switzerland, have been attempting to observe the properties of quantum physics on a larger scale, ...

Hi-fi single photons

Oct 04, 2012

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, ...

Recommended for you

Quantum physics just got less complicated

15 hours ago

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct ...

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

Fraud-proof credit cards possible with quantum physics

Dec 15, 2014

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.