Researchers identify traffic cop for meiosis—with implications for fertility and birth defects

Oct 01, 2013

Researchers at New York University and the Whitehead Institute for Biomedical Research have identified the mechanism that plays "traffic cop" in meiosis—the process of cell division required in reproduction. Their findings, which appear in the journal eLife, shed new light on fertility and may lead to greater understanding of the factors that lead to birth defects.

"We have isolated a checkpoint that is necessary for a genome's viability and for normal development," said Andreas Hochwagen, an assistant professor in NYU's Department of Biology, who co-authored the paper with Hannah Blitzblau, a researcher at the Whitehead Institute for Biomedical Research. "Without this restraining mechanism, can end up irreversibly broken during meiosis."

Most cells in an organism contain two sets of chromosomes, one inherited from the mother and the other from the father. However, sexual reproduction relies on the production of gametes—eggs and sperm —that contain only one set of chromosomes. These are produced through a specialized form of cell division—meiosis.

In this process, maternal and paternal versions of each chromosome pair up and swap sections of their DNA through a process known as homologous recombination—a "reshuffling" that gives rise to chromosomes with new combinations of maternal and paternal genes. This is followed by .

However, in order for normal development to occur, chromosomes must be replicated prior to their reshuffling. The disruption of this process jeopardizes and can spur a range of , notably Down syndrome.

Blitzblau and Hochwagen sought to determine what coordinates these processes to ensure they occur in proper order. Doing so would offer insights into how deviations from normal functionality could affect fertility and result in birth defects.

To do so, they examined budding yeast—a model organism in cell biology because its chromosome replication and regulation are similar to that of humans.

Through a series of manipulations, in which the researchers inhibited the activity of individual proteins, they found two enzymes that were necessary for meiosis: Mec1, which is similar to ATR, known to suppress tumors in humans, and DDK, which is a vital coordinator of chromosome reshuffling.

Specifically, they found that Mec1 senses when chromosomes are being replicated and transmits a molecular "wait" signal to DDK. In this way, Mec1 acts like a traffic cop that allows chromosome replication to finish without interruption, before giving DDK the ok to begin the reshuffling.

Explore further: For cells, internal stress leads to unique shapes

More information: The paper may be downloaded here: http://dx.doi.org/10.7554/eLife.00844.

Related Stories

Hotspots found for chromosome gene swapping

Nov 29, 2007

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead ...

How yeast chromosomes avoid the bad breaks

Aug 07, 2011

The human genome is peppered with repeated DNA elements that can vary from a few to thousands of consecutive copies of the same sequence. During meiosis—the cell division that produces sperm and eggs—repetitive ...

Clues to chromosome crossovers

Feb 13, 2013

Neil Hunter's laboratory in the UC Davis College of Biological Sciences has placed another piece in the puzzle of how sexual reproduction shuffles genes while making sure sperm and eggs get the right number ...

Biologists identify proteins vital to chromosome segregation

Dec 24, 2012

New York University biologists have identified how a vital protein is loaded by others into the centromere, the part of the chromosome that plays a significant role in cell division. Their findings shed new light on genome ...

Recommended for you

For cells, internal stress leads to unique shapes

14 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

15 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

17 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CancerDefect
not rated yet Oct 22, 2013
Cigarette smoking during pregnancy increases the risk of low birth weight, prematurity, spontaneous abortion, and perinatal mortality in humans, and birth defects which has been referred to as the fetal tobacco syndrome.
It is important to stop smoking completely before planning to get pregnant, as many birth defects are associated with smoking mothers.
CancerDefect.com

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

More vets turn to prosthetics to help legless pets

A 9-month-old boxer pup named Duncan barreled down a beach in Oregon, running full tilt on soft sand into YouTube history and showing more than 4 million viewers that he can revel in a good romp despite lacking ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...