Designing a super-aerodynamic wing

Oct 28, 2013 by Dana Yates
Designing a super-aerodynamic wing

(Phys.org) —Air travel may be fast and convenient, but exhaust from the millions of flights that take-off and land each year worldwide is having an impact on the health of the planet. Fortunately, a Ryerson researcher is studying how to make airplanes more environmentally friendly.

A professor of , Fengfeng (Jeff) Xi has received funding from the Natural Sciences and Engineering Research Council of Canada to support his work with "morphing" aircraft wings. Traditional are stationary, in contrast to Xi's shape-shifting wing. That is, other than high-lift devices such as flaps and slats that open and close, conventional wings remain in a fixed shape during all stages of flight – take-off, ascent, cruising, descent and landing. But this is not aerodynamically optimal, says Xi.

"A fixed geometry wing is not effective at reducing drag," he says. And when an aircraft experiences more resistance in-flight, it uses up more fuel and this, in turn, generates more . And those emissions in the upper atmosphere not only contribute to climate change, but also eventually cause premature deaths on terra firma.

According to a 2010 study by researcher Steven Barrett of the Massachusetts Institute of Technology, toxic pollutants in airplane exhaust kill at least 10,000 people around the world on an annual basis. Many of the deaths that are due to air pollution, reports the World Health Organization, involve cardiovascular and respiratory diseases, such as lung cancer.

Clearly, the stakes are high, especially in light of the growing dependence on . For example, according to the United States' Federal Aviation Administration, global air travel is expected to almost double by 2032.

To help address the need for green aviation, Xi has partnered with undergraduate students, graduate students and faculty collaborators, including Paul Walsh, chair of aerospace engineering, to develop a prototype for a modular aircraft wing – one that makes use of lightweight materials, and can transform its shape to suit the unique aerodynamic demands of each stage of flight. The result: less drag, decreased fuel consumption and reduced emissions.

The team has filed a patent for its innovative, "variable geometry" wing design in the United States. Consisting of multiple movable sections that are supported by strong beams running the length of the wing, the technology is operated by onboard computers that monitor in-flight conditions. Those computers direct the wing's modules to adapt as needed, changing shape and creating new configurations in order to make the wing more aerodynamic.

To date, the prototype has undergone testing in Xi's Reconfigurable System Laboratory in Ryerson's George Vari Engineering and Computing Centre. In the future, Xi plans to put the to the test in a large-scale wind tunnel.

Explore further: Researchers look to butterflies to improve flight

add to favorites email to friend print save as pdf

Related Stories

Researchers look to butterflies to improve flight

Oct 24, 2013

A better understanding of the aerodynamic properties of butterfly wings may lead to improved human-made flight, according to research at The University of Alabama recently funded by the National Science Foundation.

BaTboT is up for imitating smart bat maneuvers

Jun 03, 2012

(Phys.org) -- Robotics researchers in Spain and the U.S. are studying bats for their design work on drones. Bat wings are highly articulated, with skeletons similar to those of human arms and hands. The researchers ...

Recommended for you

Greater safety and security at Europe's train stations

23 hours ago

When a suspicious individual fleas on a bus or by train, then things usually get tough for the police. This is because the security systems of the various transportation companies and security services are ...

Fingerprints for freight items

23 hours ago

Security is a top priority in air freight logistics but screening procedures can be very time consuming and costly. Fraunhofer researchers intend to boost efficiency with a new approach to digital logistics, ...

On the way to a safe and secure smart home

23 hours ago

A growing number of household operations can be managed via the Internet. Today's "Smart Home" promises efficient building management. But often the systems are not secure and can only be retrofitted at great ...

DIY glove-based tutor indicates muscle-memory potential

Aug 31, 2014

A senior editor at IEEE Spectrum worked on a DIY project that enabled his 11-year-old son to improve his touch typing by use of a vibrating glove. His son was already "pretty quick on the keyboard," said ...

User comments : 0