Spider's super-thin ribbons key to silk tech

October 10, 2013
Spider's super-thin ribbons key to silk tech
A brown recluse spider.

(Phys.org) —The silk of a spider feared for its venomous bite could be the key to creating new super-sticky films and wafer-thin electronics and sensors for medical implants that are highly compatible with the human body.

A team of scientists from Oxford University and The College of William and Mary (USA) studied the (Loxosceles recluse), which produces super-thin of silk as opposed to the round fibres typically spun by spiders. The researchers report in the journal Advanced Materials this week how, in a world-first, they were able to reel and examine the unique properties of the brown recluse's silk ribbons.

While the silk ribbons have the outstanding strength and toughness of standard , their flat structure makes it possible to study the material's molecular structure in great detail and investigate what gives it its strength. The team found that the extreme thinness of the ribbons, which are up to 10 nanometres wide and only a few tens of nanometers thick, combined with its stiffness and the ability to adapt to the shapes of surfaces is what gives it its unprecedented adhesive properties. The team also found that the surface of the silk ribbons is covered with tiny, dot-like 'bumps' that the research team suspects further enhance adhesion.

'The enigmatic ribbon structure of these threads provides us with a window into spider silk in its simplest form,' said Professor Fritz Vollrath of Oxford University's Department of Zoology, an author of the study. 'All other silks are round, rope-like aggregates made up of many nano-scale filaments. This makes it virtually impossible to study in great detail the molecular structure of the itself, and the fundamentals for its great toughness.'

Spider's super-thin ribbons key to silk tech
Ribbon of silk from the brown recluse spider.

Professor Hannes Schniepp of The College of William and Mary, lead author of the report, said: 'We were able to modify an atomic force microscope to measure the rigidity of a single recluse fibre and discovered that this ribbon – only a few molecules thick – not only displays the great properties of other silks but allows us to probe its in unprecedented detail.'

This discovery is expected to have implications for the development of new super-sticky cling films and also for the manufacture of thin-film electronic devices, which might even be implanted as sensors in the – where silks are highly valued for their outstanding combination of great mechanical strength and excellent biological compatibility.

Explore further: Most stretchable spider silk reported

More information: onlinelibrary.wiley.com/doi/10.1002/adma.201302740/full

Related Stories

Most stretchable spider silk reported

February 8, 2012

The egg sac silk of the cocoon stalk of the cave spider Meta menardi is the most stretchable egg sac silk yet tested, according to a study published Feb. 8 in the open access journal PLoS ONE.

Silkworm structures drive push for new materials

May 3, 2012

(Phys.org) -- Research published in the peer-review Journal of the Royal Society Interface on Wednesday presents a close look at the structure and physical properties of silkworm cocoons. The paper’s research efforts ...

Paralysis promises smart silk technology

September 19, 2013

(Phys.org) —Oxford University researchers have harnessed the natural defence mechanism of silkworms, which causes paralysis, in what is a major step towards the large-scale production of silks with tailor-made properties.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.