Simple plants aren't always easy: Revision of the liverwort Radula buccinifera complex

Oct 31, 2013
This image shows Radula buccinifera. Credit: Matt Renner

The supposedly widespread and variable Australasian liverwort species Radula buccinifera is nothing of the kind. The species was described in 1844, and reported for New Zealand in 1855. It has gone on to be the most commonly collected species in both countries, yet it doesn't even occur in New Zealand, according to results of research led by Dr Matt Renner at Royal Botanic Gardens & Domain Trust.

Molecular and morphological evidence show that what was thought to be one of leafy liverwort from Australia and New Zealand is in fact eight different species, and five of these are new to science. The study was published in the open access journal PhytoKeys.

The species is an Australian endemic restricted to the wetter parts of the south-east of the country. Records from the tropics are referable to other species, two of which are found only there. Another two species are endemic to Australia, and a third is shared between Australia and New Zealand. The species may have been confused because many appear similar, and are variable so overlap in form.

Better understanding of has implications for studies of biogeography, in that this 'widespread species' is actually a complex of geographically restricted species. Liverworts also contain many bioactive compounds, which exhibit a range of activity including anti-microbial and anti-retroviral properties, and the greater the recognized species diversity the greater the pool of potentially useful molecules.

This image shows one of the newly described species, Radula notabilis. Credit: Matt Renner

"There may be no direct application of this research unless you are identifying liverworts, but direct application is only one kind of benefit, and solid taxonomic studies have many, the least of which is that we learn what is out there in the world around us," comments the lead author Dr Matt Renner.

Explore further: Beautiful but hiding unpleasant surprise: 3 new species of fetid fungi from New Zealand

More information: Renner MAM, Devos N, Patiño J, Brown EA, Orme A, Elgey M, Wilson TC, Gray LJ, von Konrat MJ (2013) Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species. PhytoKeys 27: 1–113. DOI: 10.3897/phytokeys.27.5523

add to favorites email to friend print save as pdf

Related Stories

Help at hand to relocate threatened species

Oct 17, 2013

Australian and New Zealand scientists Thursday said they have devised the "first rigorous framework" on deciding whether to relocate endangered animals threatened with extinction by climate change.

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

Apr 18, 2014

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...