Shifting winds in turbine arrays

Oct 22, 2013
Experimental 'isocontours' data show the mean streamwise velocity along the centerline of a scaled wind turbine array. Credit: J.Newman/RPI

Researchers modeling how changes in air flow patterns affect wind turbines' output power have found that the wind can supply energy from an unexpected direction: below.

According to the researchers, who report their results in the journal Physics of Fluids, many wind array studies overlook the fact that important airflow changes occur inside the array.

"We discovered that a typical measure of the significance of changes was rather deficient," says Jensen Newman, co-author of the paper and a graduate student at Rensselaer Polytechnic Institute's Department of Mathematical Sciences. Inspired by a desire to describe the flow experienced by realistic wind turbine arrays in greater detail, the team created a model of how flow affects ' .

The researchers introduced a mathematical way to measure changes in the flow that gives a more accurate representation of the magnitude of these changes than other current measures. "It shows that in addition to energy being made available to the turbines from above, energy is also transferred from below," Newman explains.

The tools and methodologies developed by the team for calculating changes in the flow can now be applied to other studies—for any type of flow with a repetitive pattern. Since they were also able to show that energy comes from below the rotors, it may be possible to exploit this by developing that draw more heavily on this previously unidentified source of energy.

Going forward the researchers plan to further expand the scope of their model. "We'll apply this analysis to the case of two-bladed vs. three-bladed turbines to identify the critical differences in and how these affect turbine power production," says Newman. "Similar analysis will be performed using much larger turbines to examine how the physics discovered here scale with turbine size so that the extrapolation of the results to full-scale wind farms can be better understood."

Explore further: Finding faster-than-light particles by weighing them

More information: The paper, "Streamwise development of the wind turbine boundary layer over a model wind turbine array" by Andrew J. Newman, Jose Lebron, Charles Meneveau, and Luciano Castillo, appears in the journal Physics of Fluids. dx.doi.org/10.1063/1.4818451

add to favorites email to friend print save as pdf

Related Stories

Using fluctuating wind power

Mar 25, 2013

Incorporating wind power into existing power grids is challenging because fluctuating wind speed and direction means turbines generate power inconsistently. Coupled with customers' varying power demand, many ...

Turbulence ahead

Sep 03, 2012

Although the wind may blow smoothly onto a wind turbine, it comes out the other end shredded into a complex collage of whorls, large and small. In a wind farm, the turbulent wake generated by the first row ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.