Sex determiner gene of honey bee more complicated that previously assumed

October 31, 2013

Bee colonies consist of a queen bee, lots of female worker bees and some male drones. The gene that determines the sex of the bees is much more complex than has been assumed up until now and has developed over the course of evolution at a very high rate. This is the finding of an international team of scientists under the direction of Dr. Martin Hasselmann of the Institute for Genetics of the University of Cologne. The study has been published in the renowned Oxford journal Molecular Biology and Evolution.

Male honey (Apis mellifera) hatch from unfertilized and females from fertilized ones. In these fertilized eggs, the condition of the complementary sex determiner (csd) gene is of crucial significance for the creation of female workers. The , who, in the course of their mating flight, mate with different drones multiple times, passes on to fertilized eggs a random combinations of two csd copies, so-called . If these alleles are different enough, they develop into a female. If the csd gene, in contrast, is present in the fertilized eggs in two identical versions, diploid drones develop. These are, however, eaten by after they hatch.

Up until now, it was assumed that there were up to 20 csd alleles. In the dataset, which the research team under the direction of Hasselmann collected from all over the world and examined, there were, however, 53 csd alleles found in localities (in Kenya), and worldwide at least csd 87 alleles. Using an evolutionary model, the scientists extrapolated 116 – 145 csd alleles. New csd alleles were created in a relatively quick period for evolution: ca. every 400,000 years. A region inside the csd gene in particular represents a hot-spot with a high evolutionary rate that, together with certain amino acid mutations, decisively contributes to the formation of new csd alleles in the flanking regions.

The vitality of a bee population depends on, amongst other things, the genetic diversity of sex determining alleles. These new findings are therefore very important for apiculture for minimizing the danger of inbreeding and thereby the production of diploid drones.

PD Dr. Martin Hasselmann has been the director of the research group "Population Genetics of Social Insects" at the University of Cologne as a DFG Heisenberg stipendiary since May 2012. His research foci include the honey bees, bumble bees and stingless bees, the unique biology of which can be used as models to decipher the genetic fundaments of environmental interaction and evolutionary innovation.

Explore further: Immunity-Related Genes in Leafcutting Bee Uncovered

More information: Lechner, S. et al. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera,
Mol. Biol. Evol. 2013 : mst207v1-mst207

Related Stories

Genetic study offers insight into the social lives of bees

April 11, 2011

Most people have trouble telling them apart, but bumble bees, honey bees, stingless bees and solitary bees have home lives that are as different from one another as a monarch's palace is from a hippie commune or a hermit's ...

Stress a key factor in causing bee colonies to fail

October 7, 2013

Scientists from Royal Holloway University have found that when bees are exposed to low levels of neonicotinoid pesticides - which do not directly kill bees - their behaviour changes and they stop working properly for their ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.