New model gives better control of self-assembly processes

Oct 10, 2013
New model gives better control of self-assembly processes
Researchers Peter Korevaar (left) and Tom de Greef. Credit: Bart van Overbeeke

Researchers at ICMS (Institute for Complex Molecular Systems, Eindhoven University of Technology) have developed a new model that allows better control of self-assembly, the process through which molecules aggregate by themselves into larger clusters. This model could be used in the production of plastic solar cells, and is an interesting step in the long‑term process of developing a synthetic cell. The research was published online yesterday in the journal PNAS.

Molecular self-assembly is often a matter of trial and error: the basic molecules are brought together and then you just – more or less – have to wait and see if the result has the desired structure. In their publication the TU/e researchers, supervised by prof.dr. Bert Meijer, describe a model that allows better control of the assembly process. Which means the model provides a kind of guide to which parameters need to be changed (for example the temperature, concentration and solvent used) to ensure the right material is assembled.

Plastic solar cells

In this publication the authors show how their model works in an assembly process of two molecules, which together form a material similar to that used for plastic solar cell. The model could find practical application in the near future to optimize the production process for these , as well as for other biomaterials such as hydrogels.

Synthetic cell

This is the first time that a model-based approach has been used to control a self-. According to lead author ir. Peter Korevaar, the added value results from a better understanding of the interactions between the on which the is based. This will allow extension to more complex assembly processes, as well as the prediction of their outcomes, with the building of a synthetic cell as the longer-term goal.

Explore further: 3-D printing incorporates quasicrystals for stronger manufacturing products

More information: Korevaar, P. et al., Model-driven optimization of multicomponent self-assembly processes, PNAS (7 October 2013, online). www.pnas.org/content/early/2013/10/02/1310092110

add to favorites email to friend print save as pdf

Related Stories

Researchers make droplets dance (w/ Video)

Jul 19, 2013

(Phys.org) —Researchers from Aalto University and Paris Tech have placed water droplets containing magnetic nanoparticles on strong water repellent surfaces and have made them align in various static and ...

Recommended for you

'Swiss cheese' membrane with adjustable holes

3 hours ago

A new membrane, developed by University of Twente scientists, can be made more or less porous 'on demand'. In this way, smart switching between 'open' and 'closed' is possible, which opens the way to innovative ...

Stretching oxides to modulate electrochemical properties

5 hours ago

Solid oxide fuel cells and solid oxide electrolysis cells hold the promise of highly efficient energy conversion, with lower pollution, to meet increasing global energy demands. But these devices need good ...

Developing the battery of the future

18 hours ago

The search for the next generation of batteries has led researchers at the Canadian Light Source synchrotron to try new methods and materials that could lead to the development of safer, cheaper, more powerful, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.