Scientists modify Botox for the treatment of pain

October 31, 2013

A team of 22 scientists from 11 research institutes led by Professor Bazbek Davletov, now at the University of Sheffield, created and characterised a new molecule that was able to alleviate hypersensitivity to inflammatory pain.

The work is featured on the cover of the October 2013 issue of the scientific journal Bioconjugate Chemistry.

Professor Bazbek Davletov joined the Department of Biomedical Science in September last year from the Medical Research Council's Laboratory of Molecular Biology in Cambridge, where his team developed a new way of joining and rebuilding .

By using elements of Clostridium botulinum and Clostridium tetani neurotoxins, commonly known as Botox and tetanus toxin respectively, the scientists were able to develop a molecule with new biomedical properties, without unwanted toxic effects.

While the Botox element is able to block neuronal communication – and therefore signals - for months, the tetanus component targets the central nervous system very effectively. The combination of the two elements is of great interest for neuroscience and can be applied to the treatment of several neurological disorders, particularly conditions and epilepsy.

Botox and tetanus neurotoxins hold great promise for clinical applications, but their paralytic activity was a stumbling block until now. The team demonstrated that their newly engineered molecule is a potent non-paralysing neuronal blocker. Preclinical collaborative studies with Dr Enrico Ferrari at the University of Lincoln and Professor Stephen Hunt at University College London indicate usefulness of the new molecule for alleviation of .

Professor Davletov added: "Currently painkillers relieve lingering pain only temporarily and often have unwanted side effects. A single injection of the new molecule at the site of pain could potentially relieve pain for many months in humans and this now needs to be tested. "We hope that the engineered molecule could improve the quality of life for those people who suffer from chronic pain. We are now negotiating transfer of the technology to a major pharmaceutical company."

Professor Davletov's team in the Department of Biomedical Science is now working not only on neuronal blockers tailored for various neurological conditions but also on developing new cancer drugs.

More information: Synthetic Self-Assembling Clostridial Chimera for Modulation of Sensory Functions, Bioconjugate Chemistry, DOI: 10.1021/bc4003103

Related Stories

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.