Scientists modify Botox for the treatment of pain

Oct 31, 2013

A team of 22 scientists from 11 research institutes led by Professor Bazbek Davletov, now at the University of Sheffield, created and characterised a new molecule that was able to alleviate hypersensitivity to inflammatory pain.

The work is featured on the cover of the October 2013 issue of the scientific journal Bioconjugate Chemistry.

Professor Bazbek Davletov joined the Department of Biomedical Science in September last year from the Medical Research Council's Laboratory of Molecular Biology in Cambridge, where his team developed a new way of joining and rebuilding .

By using elements of Clostridium botulinum and Clostridium tetani neurotoxins, commonly known as Botox and tetanus toxin respectively, the scientists were able to develop a molecule with new biomedical properties, without unwanted toxic effects.

While the Botox element is able to block neuronal communication – and therefore signals - for months, the tetanus component targets the central nervous system very effectively. The combination of the two elements is of great interest for neuroscience and can be applied to the treatment of several neurological disorders, particularly conditions and epilepsy.

Botox and tetanus neurotoxins hold great promise for clinical applications, but their paralytic activity was a stumbling block until now. The team demonstrated that their newly engineered molecule is a potent non-paralysing neuronal blocker. Preclinical collaborative studies with Dr Enrico Ferrari at the University of Lincoln and Professor Stephen Hunt at University College London indicate usefulness of the new molecule for alleviation of .

Professor Davletov added: "Currently painkillers relieve lingering pain only temporarily and often have unwanted side effects. A single injection of the new molecule at the site of pain could potentially relieve pain for many months in humans and this now needs to be tested. "We hope that the engineered molecule could improve the quality of life for those people who suffer from chronic pain. We are now negotiating transfer of the technology to a major pharmaceutical company."

Professor Davletov's team in the Department of Biomedical Science is now working not only on neuronal blockers tailored for various neurological conditions but also on developing new cancer drugs.

Explore further: Scientists synthesise new 'chimera' protein which could herald future drug treatments for chronic pain

More information: Synthetic Self-Assembling Clostridial Chimera for Modulation of Sensory Functions, Bioconjugate Chemistry, DOI: 10.1021/bc4003103

add to favorites email to friend print save as pdf

Related Stories

Beyond Botox: Natural born killer or medical miracle?

Mar 15, 2013

Botox is best known for its use in cosmetic procedures, but this potent neurotoxin could be transformed into an extraordinary drug to treat a raft of debilitating conditions, a leading scientist will tell ...

Drug may reduce chronic pain for spinal cord injuries

Oct 31, 2013

(Medical Xpress)—Researchers have discovered that a known neurotoxin may cause chronic pain in people who suffer from paralysis, and a drug that has been shown to remove the toxin might be used to treat ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.