Study reveals how to better master stem cells' fate

Oct 24, 2013 by Cristy Lytal
USC researcher Qi-Long Ying has identified a new way of culturing human embryonic stem cells. Credit: Image courtesy of Qi-Long Ying

(Phys.org) —USC scientist Qi-Long Ying and a team of researchers have long been searching for biotech's version of the fountain of youth—ways to encourage embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) to endlessly self-renew, or divide to produce more stem cells.

In a pair of studies published in Nature Communications in September and in The EMBO Journal in August, Ying and his team revealed some of the ways that ESCs and EpiSCs retain their pluripotency, or ability to differentiate into virtually any kind of cell.

The study in Nature Communications identified a novel way of culturing human ESCs by focusing on the Wnt/beta-catenin signaling pathway—a group of molecules that work together to control various cell functions, including some related to embryonic development.

According to the researchers, this pathway can prompt mouse EpiSCs and human ESCs to either self-renew or differentiate. When the protein beta-catenin remains within the cell cytoplasm but outside of the nucleus, the stem cell continues to self-renew. When beta-catenin moves into a stem cell's nucleus, differentiation begins.

The paper published in The EMBO Journal addresses mouse ESCs, which are derived from the embryo at an earlier stage and are more pluripotent than mouse EpiSCs.

The study revealed the important role of Tfcp2l1—a transcription factor, or protein that controls which genes are turned on and off in a cell.

Illustration by Qing Liu-Michael

In mice, Tfcp2l1 helps communicate to ESCs that they should self-renew. The transcription factor also shows promise for "rewinding" slightly more differentiated EpiSCs into the more naïve ESC state.

By learning more about the ESC and EpiSC playbooks, Ying and his colleagues can better control stem cell self-renewal, offering hope for patients with currently untreatable diseases and creating potential for a wide variety of other applications.

Illustration by Qing Liu-Michael

"These new findings have allowed us to develop conditions for the efficient propagation of human ESCs, and might also enable us to establish pluripotent from different species," said Ying, associate professor of and regenerative medicine at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. "This has far-reaching implications for a variety of applied areas of investigation, ranging from manipulating the genomes of agricultural animals to developing stem cell-based therapies for ailments such as Parkinson's disease or spinal cord injuries."

Explore further: Scientists identify key regulator controlling formation of blood-forming stem cells

More information: www.nature.com/ncomms/2013/130829/ncomms3403/full/ncomms3403.html
www.nature.com/doifinder/10.1038/emboj.2013.175

Related Stories

Researchers learn how to break a sweat

Oct 23, 2013

Without sweat, we would overheat and die. In a recent paper in the journal PLOS ONE, USC faculty member Krzysztof Kobielak and a team of researchers explored the ultimate origin of this sticky, stinky but vi ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

19 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

20 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...