Force to be reckoned with: Team measures laser power with portable scale

Oct 23, 2013

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a novel method for measuring laser power by reflecting the light off a mirrored scale, which behaves as a force detector.

Although it may sound odd, the technique is promising as a simpler, faster, less costly and more portable alternative to conventional methods of calibrating high-power lasers used in manufacturing, the military and research.

Optical power has traditionally been measured by comparing it to electrical units. Researchers aim a at a coated detector, measure the detector's temperature change, and then determine the needed to generate an equivalent amount of heat. This method is extremely accurate but difficult with high-power lasers, because it requires slow heating and cooling of massive absorbers. Most absorbers cannot withstand the destructive powers of lasers used for cutting and melting.

Laser power also can be measured by comparison to a reference mass, which is what scales measure, or an equivalent force. This idea is almost as old as the laser but only recently became practical. Large lasers like industrial cutting tools, with output power of 4 to 6 kilowatts, and military lasers with of 10 to 100 kilowatts are becoming more common, and they exert enough force to be measured relatively easily. Researchers also now have access to precision scales that can be fitted with mirrors and have the capability to operate either vertically or horizontally. The only limiting dimension is that the mirror needs to be large enough to reflect the laser beam.

This video is not supported by your browser at this time.
This is an animation of the new laser power measurement technique. Credit: Gary Kuebler and Ian Parker

NIST's measurement technique, described in a new paper,* measures a laser's force, or the push exerted on a mirror by the streaming photons (light particles). The result, measured in either milligrams (mass) or microNewtons (force), is used to calculate . The scale is first positioned horizontally to be calibrated with a mass placed on top. This "self-calibration" feature means the instrument, if used in the field, would not need to be transported to NIST or somewhere else for periodic evaluations. When used to measure a laser's force, the scale is positioned vertically to be compatible (and safe) with large lasers that typically are mounted horizontally.

Perhaps most intriguingly, light power output can be measured while the laser is being used, thus not wasting any light. The beam is simply reflected off the mirror and directed to a target.

The new measurement method not only simplifies measurements but also advances fundamental measurement science. Now, NIST will be able to compare an optical watt (the basic electrical unit) to a kilogram, the fundamental unit of mass, perhaps leading to improved accuracy in laser power measurements and potentially enabling faster mass calibrations at the microgram level on the factory floor.

NIST researchers have developed and tested a prototype setup with infrared lasers and a commercial scale. The tabletop scale weighs less than 25 pounds. NIST researchers expect the setup would ultimately be about one-fifth the cost of the traditional approach and produce results in about one-tenth the time (less than 2 seconds). The methods are projected to have comparable accuracy of plus or minus 1 percent.

Explore further: Super-nanotubes: 'Remarkable' spray-on coating combines carbon nanotubes with ceramic

More information: P.A. Williams, J.A. Hadler, R. Lee, F. Maring and J.H. Lehman. Use of radiation pressure for measurement of high-power laser emission. Optics Letters. Oct. 15.

Related Stories

New Nanotube Coating Enables Novel Laser Power Meter

May 06, 2009

(PhysOrg.com) -- The U.S. military can now calibrate high-power laser systems, such as those intended to defuse unexploded mines, more quickly and easily thanks to a novel nanotube-coated power measurement ...

Recommended for you

Better thermal-imaging lens from waste sulfur

4 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...