How protein suicide assure healthy cell structures

Oct 31, 2013
How protein suicide assure healthy cell structures
Images of a sperm-precursor cell from the fruit fly, Drosophila melanogaster. A) Cells with normal levels of PLK4 protein have four centrioles (green); B) Cells with higher levels of PLK4 protein have extra-number of centrioles. Green and blue colors represent centrioles and DNA, respectively. Credit: Swadhin Jana, IGC.

Centrioles are tiny structures in the cell that play an important role in cell division and in the assembly of cilia and flagella. Changes in the number of centrioles are involved in diseases, such as cancer or infertility. Hence, the manipulation of these structures is being discussed for diagnosis and therapeutics. The regulation of centriole number has been further pinpointed in the latest issue of the scientific journal Current Biology. Researchers from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Monica Bettencourt-Dias, have now discovered that the master protein regulator in centriole formation, Polo-like kinase 4 (PLK4), needs to self-destruct in a regulated manner to ensure the presence of a normal number of centrioles in cells.

PLK4 is one of the key proteins required to control centriole formation: in its absence centrioles fail to form, while in excess PLK4 induces the formation of an extra number of those structures. Bettencourt-Dias' team has now identified how PLK4 controls its levels, and ultimately the number of centrioles. By performing different biochemical assays, the researchers observed that PLK4 is capable of auto-regulating its levels by adding chemical groups of phosphate to itself, which will act as a signal for destruction.

However, if PLK4 kills itself too early this will prevent it from ensuring the control of centriole number. Data obtained by the research team shows that the destruction mechanism undergoes a determined sequence of events that provides PLK4 with enough time for centriole number control before it is degraded. First, PLK4 acts by adding phosphate groups to other PLK4 proteins. In order for this to happen, different PLK4 proteins need to encounter themselves within the cell, which only occurs when a minimal amount of PLK4 is present. During the accumulation time, PLK4 is able to act in the formation of centrioles. Furthermore, the researchers discovered that phosphate groups were added to different sites of PLK4 under a specific order. Therefore the commits 'suicide', but in a controlled and timely fashion.

The research team then tested if this destruction mechanism had any implications in living organisms. Using as model organism the fruit fly, Drosophila melanogaster, they observed the natural existence of the destruction mechanism in different tissues of the fly. When this mechanism was abolished in female and male germ cells, precursors of eggs and sperm, it had an impact on the flies' fertility.

Ines Bento and Ines Cunha Ferreira, two of the authors of this work, say: "Our data indicates that PLK4 is a 'suicide' protein. Its activity determines its degradation. This is an important piece of a complex puzzle. But further research is required namely on how PLK4 regulation is coordinated within the cycle of ."

Mónica Bettencourt-Dias adds: "The better we understand how PLK4 protein is regulated the more we perceive how the number of is controlled. It was recently announced that inhibition of PLK4 is going to clinical trials for breast cancer by researchers in Canada, so it is important to understand how this molecule is regulated."

Explore further: The inheritance of the primary cilium and the soul of the cell

More information: Cunha-Ferreira, I., Bento, I., Marques, A. P., Jana, S. C., Lince-Faria, M., Duarte, P., Borrego-Pinto, J., Gilberto, S., Amado, T., Brito, D., Rodrigues-Martins, A., Debski, J., Dzhindzhev, N., Bettencourt-Dias, M. Regulation of Autophosphorylation Controls PLK4 Self-Destruction and Centriole Number, Current Biology (2013), dx.doi.org/10.1016/j.cub.2013.09.037

add to favorites email to friend print save as pdf

Related Stories

'Birth control' for centrioles

Jan 26, 2009

Like DNA, centrioles need to duplicate only once per cell cycle. Rogers et al. uncover a long-sought mechanism that limits centriole copying, showing that it depends on the timely demolition of a protein that ...

Making cells turn cartwheels

Feb 01, 2011

Centrioles are barrel-shaped connection hubs that, like key Meccano parts, hold together the microtubule connection rods that form the structural framework of the cells in our bodies.

How do cells count?

Jan 12, 2009

In the 13th January print edition of the journal Current Biology, Instituto Gubenkian de Ciencia researchers provide insight into an old mystery in cell biology, and offer up new clues to understanding cancer. Inês Cunha ...

The ins and outs of building the sperm tail

Aug 13, 2012

Sperm swim, lung cells sweep mucus away, and the cells in the female Fallopian tube move eggs from the ovary to the uterus. Underlying these phenomena are flagella – slender, hair-like structures extending ...

Recommended for you

New functions for chromatin remodelers

2 hours ago

Large molecular motors consisting of up to a dozen different proteins regulate access to the genome, which is essential for the transcription of genes and for the repair of DNA damage. Susan Gasser and her ...

Researchers film protein quake for the first time

Aug 27, 2014

One of nature's mysteries is how plants survive impact by the huge amounts of energy contained in the sun's rays, while using this energy for photosynthesis. The hypothesis is that the light-absorbing proteins ...

User comments : 0