The power of one: Single photons illuminate quantum technology

Oct 11, 2013 by Matt Collins, The Conversation
No photon bunches, please. Credit: derekbruff

Quantum mechanics, which aims to describe the nano-scale world around us, has already led to the development of many technologies ubiquitous in modern life, including broadband optical fibre communication and smartphone displays.

These devices operate using billions and billions of photons, the smallest indivisible quanta of light – but many powerful quantum effects (such as enabling quantum ) can only be harnessed when working with a single .

The quantum science community has been waiting for more than a decade for a compact optical chip that delivers exactly one photon at a time at very high rates.

With international and local collaborators, I reported today in Nature Communications the ability to combine single photon-generating devices on a single silicon chip, a breakthrough for next generation quantum technologies.

Photons as qubits

In 1982, American physicist and Nobel Prize laureate Richard Feynman proposed the idea of building a new type of computer based on the principles of .

While a regular computer represents information as a bit with a value of either 0 or 1, the quantum equivalent is the qubit, a quantum particle that has two clear binary states.

Due to its quantum nature a qubit can be in either state 0, or state 1 or superposition of them both at the same time.

Computations performed using a qubit follow a different set of rules to a regular computer – and this allows certain problems to be solved exponentially faster.

A photon is one example of a that can be used as a qubit, and ideally researchers would like to be able to generate photons one by one, as two or more photons in a bunch no longer act as a .

Credit: Photon

It is easy to generate many photons, but much harder to ensure they come out one by one – photons are gregarious by nature – and a high generation rate is desired, similar to a high central processing unit clock speed.

The creation of single photons has been possible for some years, but with poor performance and often bulky implementation. We showed that by combining multiple imperfect devices, all on a single silicon chip, we can produce a much higher quality and compact source of single photons, opening a number of new applications.

Fishing for photons

The challenge in our research was within the physical mechanism behind photon generation. There is an intrinsic link between the rate of useful single photons creation and how often two or more photons are generated instead: these bunches are unwanted.

Generating higher rates of single photons is thus accompanied by a higher proportion of unwanted additional photons, so we wanted to reduce that to a more favourable ratio.

Think about it in terms of fishing – instead of generating photons, we want to catch fish. An easy option is to send a fisherman out on a boat to cast a net; this will result in a lot of good fish, but also a lot of unwanted garbage.

This is analogous to using a conventional photon source, which generates many photons, but also a lot of unwanted photon bunches.

Alternatively, we can send two people out with fishing rods. With some luck, they could collectively catch the same number of fish in the same amount of time, but because the method is more selective, the chance of collecting garbage has been vastly reduced.

A single device for generating single photons (one fisherman) when operating at a high rate (casting a large net) generated unwanted photon bunches. By combining two single photon sources (two fishermen on a boat) on a single silicon chip (the boat), the proportion of ‘garbage’ photon bunches was significantly reduced. In the future we will combine many photon sources on one chip (we want many fishermen!). Credit: SevenPixelz

This is analogous to the work done here: two single photon sources (the fishermen) were combined on a single silicon chip (the boat), with the proportion of "garbage" photon bunches significantly reduced.

More fishermen

In the future we will extend this idea and combine many more devices onto a single silicon optical chip. Even though each individual source operates at a lower rate, they can be combined to give much higher rates – you just need more fishermen!

This will allow us to generate a large number of useful single photons, which can act as optical qubits, a fundamental ingredient of complex quantum processors.

The impact of this work opens the potential for more advanced single photon technologies, including secure communication where improved single photon generation directly increases the distance and bit-rate of a quantum secure communication link.

This an active area of research at the Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS) within the University of Sydney.

Still more applications include metrology (the science of measurement), simulation of biological and chemical systems, and – of course – quantum computing.

Explore further: Simon's algorithm run on quantum computer for the first time—faster than on standard computer

More information: www.nature.com/ncomms/2013/131… full/ncomms3582.html

Related Stories

Hi-fi single photons

Oct 04, 2012

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, ...

In quantum computing, light may lead the way

Oct 08, 2013

(Phys.org) —Light might be able to play a bigger, more versatile role in the future of quantum computing, according to new research by Yale University scientists.

Recommended for you

How the hummingbird achieves its aerobatic feats

12 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (3) Oct 11, 2013
In 1982, American physicist and Nobel Prize laureate Richard Feynman proposed the idea of building a new type of computer based on the principles of quantum mechanics.
While a regular computer represents information as a bit with a value of either 0 or 1, the quantum equivalent is the qubit, a quantum particle that has two clear binary states.
…..
A photon is one example of a quantum particle that can be used as a qubit, and ideally researchers would like to be able to generate photons one by one,…..

By the ways, talking about the photon creation, it is interesting to note that since Feynman could not answer his father, until today we still do not know how it work. Maybe understand the mechanism could help the research ….
http://www.vacuum...21〈=en
VendicarE
not rated yet Oct 12, 2013
Quantum Mechanics is the devils work.

Dirac was the devils concubine.

holoman
1 / 5 (1) Oct 15, 2013
Wouldn't it be interesting to change the properties of photon quanta to some other packet value in flight between destinations.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.