New molecular target for malaria control identified

October 29, 2013

A new study led by Harvard School of Public Health (HSPH) and University of Perugia (UNIPG) researchers has shown that egg development in the mosquito species primarily responsible for spreading malaria depends on a switch in the female that is turned on by a male hormone delivered during sex. Blocking the activation of this switch could impair the ability of the species, Anopheles gambiae, to reproduce, and may be a viable future strategy for mosquito and malaria control.

The study appears online October 29, 2013 in PLoS Biology.

"These findings represent a significant step forward in our understanding of how these devastating malaria vectors reproduce," said Flaminia Catteruccia, associate professor of immunology and infectious diseases at HSPH and UNIPG.

Malaria is a leading cause of death in tropical and . According to the U.S. Centers for Disease Control and Prevention, malaria claims nearly 660,000 lives per year, 90% of them in Africa—and most of them children. There were an estimated 216 million malaria cases worldwide in 2010, mostly among pregnant women and children.

The researchers based their investigation on existing knowledge about Anopheles gambiae, a highly efficient vector of the malaria parasite because those mosquitoes primarily feed on human blood and have a remarkably high reproductive rate.

The researchers studied the interaction between a steroid hormone called 20-hydroxy-ecdysone, or 20E—which is transferred from the male to the female mosquito during mating—and a female "Mating-Induced Stimulator of Oogenesis," or MISO, protein. (Oogenesis is the creation of an egg cell.)

They used chemical techniques to suppress MISO's functioning in female mosquitoes and found that doing so reduced . They also found that MISO and 20E interact in the female mosquito's reproductive tract. Further, they identified the pathway through which 20E affects MISO. The 20E-MISO interaction boosts the accumulation of lipids in the ovaries, leading to a more rapid and higher production of eggs.

The researchers found that egg development depends on a switch—the MISO protein—in the female that is turned on by a male hormone delivered during sex. Male-transferred 20E essentially acts as a "mating signal" for the female to produce more eggs. "How males contributed to egg development had been previously unknown; with the identification of the molecular players of this male-female interaction we can now find ways to switch off the signal and prevent females from reproducing," said Catteruccia.

This new finding holds promise for the development of new tools for controlling -transmitting mosquito populations, the researchers said.

"This is the first time, in any insect species, that a has been shown to directly interact with a female protein and alter the ability of the female to reproduce," said co-author Francesco Baldini, a UNIPG graduate student who performed part of the analyses as a visiting scientist at HSPH.

Explore further: Meddling in mosquitoes' sex lives could help stop the spread of malaria, says study

More information: "The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae," Francesco Baldini, Paolo Gabrieli, Adam South, Clarissa Valim, Francesca Mancini, Flaminia Catteruccia, PLoS Biology, online October 29, 2013.

Related Stories

Mosquitoes can't spot a spermless mate

August 8, 2011

A female mosquito cannot tell if the male that she has mated with is fertile or 'spermless' and unable to fertilise her eggs, according to a new study from scientists at Imperial College London.

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.