Stirred from within: Micromotors mix for more effective oxidative degradation of chemical weapons

Oct 31, 2013
Stirred from within: Micromotors mix for more effective oxidative degradation of chemical weapons

(Phys.org) —Rapidly and efficiently converting chemical weapons into nontoxic products in remote areas is one of the most difficult tasks in the disposal of weapons of mass destruction. In the journal Angewandte Chemie, a team from the University of California, San Diego has now described how self-propelled micromotors can accelerate the oxidative neutralization of nerve agents by intensively mixing the remediation solution.

Environmentally friendly processes that use hydrogen peroxide and an activator (e.g. sodium bicarbonate) to degrade like sarin, VX, soman, and mustard gas have recently replaced earlier chlorine-based methods. However, they generally require high concentrations of peroxide, long reaction times, and intensive mechanical mixing—which can be extremely problematic in the elimination of stocks of chemical weapons in remote regions or enemy camps.

A team headed by Joseph Wang has now developed a novel strategy based on mixing of the remediation solution with self-propelled micromotors. The motors are tiny conical tubes made from a bilayer with a polymer on the outside and platinum on the inside. In this process, hydrogen peroxide acts as both the oxidizing agent for the chemical weapons and fuel for the micromotors. As the is catalytically decomposed on the inner platinum surface, oxygen are formed. The bubbles exit the tubes at their rear (wider) end, pushing them through the liquid. The movement of the motors through the liquid combined with the gas bubbles provides for efficient mixing of the remediation solution. This significantly increases both the turnover and the speed of the decontamination reaction without requiring high concentrations of peroxide.

Wang's team was able to demonstrate the efficiency of their new method by breaking down a variety of organophosphate pesticides with chemical structures similar to those of organophosphate . In a demonstration reaction, 1.5 million micromotors in a volume of about 15 mL achieved mixing comparable to a magnetic stirrer at 200 revolutions per minute.

The concept of mixing through the movement of self-propelled micromotors is not limited to the neutralization of chemical weapons. It could also be used to accelerate chemical reactions in general. This could be useful in applications like microreactors, where mechanical is often difficult.

Explore further: Chemists characterize 3-D macroporous hydrogels

More information: Wang, J. Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats, Angewandte Chemie International Edition. dx.doi.org/10.1002/anie.201308072

Related Stories

Newly discovered mechanism propels micromotors

Oct 15, 2013

Scientists studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines. The new mechanism is described in The Journal of Chemical Ph ...

Explainer: What are chemical weapons?

May 24, 2013

There was chaos on the streets of Halajba in March 1988. In this corner of Iraq, at the time Iraqi Kurdistan, people had suddenly started experiencing cold-like symptoms – tight chest and nasal congestion. ...

Mapping the chemistry needed for life at Europa

Apr 05, 2013

(Phys.org) —A new paper led by a NASA researcher shows that hydrogen peroxide is abundant across much of the surface of Jupiter's moon Europa. The authors argue that if the peroxide on the surface of Europa ...

Recommended for you

Chemists characterize 3-D macroporous hydrogels

2 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

8 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Reviving cottonseed meals adhesives potential

10 hours ago

Cottonseed meal—the leftovers after lint and oil are extracted from cottonseed—is typically fed to ruminant livestock, such as cows, or used as fertilizer. But Agricultural Research Service scientists ...

New concrete composite can heal itself

10 hours ago

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that ...

Actuators that mimic ice plants

11 hours ago

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.