Stirred from within: Micromotors mix for more effective oxidative degradation of chemical weapons

Oct 31, 2013
Stirred from within: Micromotors mix for more effective oxidative degradation of chemical weapons

(Phys.org) —Rapidly and efficiently converting chemical weapons into nontoxic products in remote areas is one of the most difficult tasks in the disposal of weapons of mass destruction. In the journal Angewandte Chemie, a team from the University of California, San Diego has now described how self-propelled micromotors can accelerate the oxidative neutralization of nerve agents by intensively mixing the remediation solution.

Environmentally friendly processes that use hydrogen peroxide and an activator (e.g. sodium bicarbonate) to degrade like sarin, VX, soman, and mustard gas have recently replaced earlier chlorine-based methods. However, they generally require high concentrations of peroxide, long reaction times, and intensive mechanical mixing—which can be extremely problematic in the elimination of stocks of chemical weapons in remote regions or enemy camps.

A team headed by Joseph Wang has now developed a novel strategy based on mixing of the remediation solution with self-propelled micromotors. The motors are tiny conical tubes made from a bilayer with a polymer on the outside and platinum on the inside. In this process, hydrogen peroxide acts as both the oxidizing agent for the chemical weapons and fuel for the micromotors. As the is catalytically decomposed on the inner platinum surface, oxygen are formed. The bubbles exit the tubes at their rear (wider) end, pushing them through the liquid. The movement of the motors through the liquid combined with the gas bubbles provides for efficient mixing of the remediation solution. This significantly increases both the turnover and the speed of the decontamination reaction without requiring high concentrations of peroxide.

Wang's team was able to demonstrate the efficiency of their new method by breaking down a variety of organophosphate pesticides with chemical structures similar to those of organophosphate . In a demonstration reaction, 1.5 million micromotors in a volume of about 15 mL achieved mixing comparable to a magnetic stirrer at 200 revolutions per minute.

The concept of mixing through the movement of self-propelled micromotors is not limited to the neutralization of chemical weapons. It could also be used to accelerate chemical reactions in general. This could be useful in applications like microreactors, where mechanical is often difficult.

Explore further: Miniature two-color barcodes have the potential to combat forgery and track cancerous cells

More information: Wang, J. Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats, Angewandte Chemie International Edition. dx.doi.org/10.1002/anie.201308072

Related Stories

Newly discovered mechanism propels micromotors

Oct 15, 2013

Scientists studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines. The new mechanism is described in The Journal of Chemical Ph ...

Explainer: What are chemical weapons?

May 24, 2013

There was chaos on the streets of Halajba in March 1988. In this corner of Iraq, at the time Iraqi Kurdistan, people had suddenly started experiencing cold-like symptoms – tight chest and nasal congestion. ...

Mapping the chemistry needed for life at Europa

Apr 05, 2013

(Phys.org) —A new paper led by a NASA researcher shows that hydrogen peroxide is abundant across much of the surface of Jupiter's moon Europa. The authors argue that if the peroxide on the surface of Europa ...

Recommended for you

New insights on carbonic acid in water

2 hours ago

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

NASA is catalyst for hydrogen technology

12 hours ago

NASA answered a call to help the world's largest aerospace company develop a better way to generate electricity for its aircraft. Instead, it wound up helping a very small technology company to thrive.

Triplet threat from the sun

Oct 21, 2014

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

User comments : 0