Squeezing in the micro-domain

Oct 10, 2013
Squeezing in the micro-domain

While the air pressure in a wheel and the blood pressure inside a human body can precisely be measured, it is still a challenge to measure the pressure inside microscopic objects such as cells in our bodies.

Researchers from Universities of Bristol and Düsseldorf (Germany) have found a method to measure the pressure in small objects, which is published in the latest issue of Nature Communications.

The idea is similar to using a sleeve when our is taken, but on a scale ten thousand times smaller. Rather than squeezing an arm, a liquid of tiny particles is squeezed by other particles using the tiny forces of light known as optical tweezers.

Dr Paddy Royall, Royal Society University Research Fellow in the Schools of Physics and Chemistry, said: "In the future, this method can be used to access the turgor pressure inside and thus to diagnose various diseases, for example certain types of cancerous cells have abnormally low ."

Explore further: 3,000 atoms entangled with a single photon

More information: Williams, I. et al. Direct measurement of osmotic pressure via adaptive confinement of quasi hard disc colloids, Nature Communications, 02 October 2013. www.nature.com/ncomms/2013/131… 5/pdf/ncomms3555.pdf

add to favorites email to friend print save as pdf

Related Stories

Key mechanism behind herpes revealed

Oct 02, 2013

Researchers at Lund University in Sweden have for the first time managed to measure the internal pressure that enables the herpes virus to infect cells in the human body. The discovery paves the way for the development of ...

Recommended for you

Theory of the strong interaction verified

4 hours ago

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

Fluctuation X-ray scattering

7 hours ago

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Understanding spectral properties of broadband biphotons

9 hours ago

Advances in quantum optical technologies require scientists to control and exploit the properties of so-called biphotons. Biphotons occur when two photons become 'quantum-entangled' - spatially separate entities ...

Hydrodynamics approaches to granular matter

9 hours ago

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.