Squeezing in the micro-domain

Oct 10, 2013
Squeezing in the micro-domain

While the air pressure in a wheel and the blood pressure inside a human body can precisely be measured, it is still a challenge to measure the pressure inside microscopic objects such as cells in our bodies.

Researchers from Universities of Bristol and Düsseldorf (Germany) have found a method to measure the pressure in small objects, which is published in the latest issue of Nature Communications.

The idea is similar to using a sleeve when our is taken, but on a scale ten thousand times smaller. Rather than squeezing an arm, a liquid of tiny particles is squeezed by other particles using the tiny forces of light known as optical tweezers.

Dr Paddy Royall, Royal Society University Research Fellow in the Schools of Physics and Chemistry, said: "In the future, this method can be used to access the turgor pressure inside and thus to diagnose various diseases, for example certain types of cancerous cells have abnormally low ."

Explore further: Multiphysics invisibility cloak manipulates both electric current and heat

More information: Williams, I. et al. Direct measurement of osmotic pressure via adaptive confinement of quasi hard disc colloids, Nature Communications, 02 October 2013. www.nature.com/ncomms/2013/131… 5/pdf/ncomms3555.pdf

add to favorites email to friend print save as pdf

Related Stories

Key mechanism behind herpes revealed

Oct 02, 2013

Researchers at Lund University in Sweden have for the first time managed to measure the internal pressure that enables the herpes virus to infect cells in the human body. The discovery paves the way for the development of ...

Recommended for you

New terahertz device could strengthen security

8 hours ago

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

12 hours ago

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.