Squeezing in the micro-domain

Oct 10, 2013
Squeezing in the micro-domain

While the air pressure in a wheel and the blood pressure inside a human body can precisely be measured, it is still a challenge to measure the pressure inside microscopic objects such as cells in our bodies.

Researchers from Universities of Bristol and Düsseldorf (Germany) have found a method to measure the pressure in small objects, which is published in the latest issue of Nature Communications.

The idea is similar to using a sleeve when our is taken, but on a scale ten thousand times smaller. Rather than squeezing an arm, a liquid of tiny particles is squeezed by other particles using the tiny forces of light known as optical tweezers.

Dr Paddy Royall, Royal Society University Research Fellow in the Schools of Physics and Chemistry, said: "In the future, this method can be used to access the turgor pressure inside and thus to diagnose various diseases, for example certain types of cancerous cells have abnormally low ."

Explore further: New filter could advance terahertz data transmission

More information: Williams, I. et al. Direct measurement of osmotic pressure via adaptive confinement of quasi hard disc colloids, Nature Communications, 02 October 2013. www.nature.com/ncomms/2013/131… 5/pdf/ncomms3555.pdf

add to favorites email to friend print save as pdf

Related Stories

Key mechanism behind herpes revealed

Oct 02, 2013

Researchers at Lund University in Sweden have for the first time managed to measure the internal pressure that enables the herpes virus to infect cells in the human body. The discovery paves the way for the development of ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.