Major leap towards graphene for solar cells: Graphene retains its properties even when coated with silicon

October 8, 2013
Graphene was deposited onto a glass substrate. The ultrathin layer is but one atomic layer thick (0.3 Angström, or 0.03 nanometers), although charge carriers are able to move about freely within this layer. This property is retained even if the graphene layer is covered with amorphous or polycrystalline silicon. Credit: Marc A. Gluba/HZB

Dr. Marc Gluba and Professor Dr. Norbert Nickel of the HZB Institute for Silicon Photovoltaics have shown that graphene retains its impressive set of properties when it is coated with a thin silicon film. These findings have paved the way for entirely new possibilities to use in thin-film photovoltaics.

Graphene has extreme conductivity and is completely transparent while being inexpensive and nontoxic. This makes it a perfect candidate material for transparent contact layers for use in solar cells to conduct electricity without reducing the amount of incoming light - at least in theory. Whether or not this holds true in a real world setting is questionable as there is no such thing as "ideal" - a free floating, flat honeycomb structure consisting of a single of carbon atoms: interactions with adjacent layers can change graphene's properties dramatically.

"We examined how graphene's conductive properties change if it is incorporated into a stack of layers similar to a silicon based thin film solar cell and were surprised to find that these properties actually change very little," Marc Gluba explains. To this end, they grew graphene on a thin copper sheet, next transferred it to a glass substrate, and finally coated it with a thin film of silicon. They examined two different versions that are commonly used in conventional silicon thin-film technologies: one sample contained an amorphous silicon layer, in which the silicon atoms are in a disordered state similar to a hardened molten glas; the other sample contained poly-crystalline silicon to help them observe the effects of a standard crystallization process on graphene's properties.

Even though the morphology of the top layer changed completely as a result of being heated to a temperature of several hundred degrees C, the graphene is still detectable. "That's something we didn't expect to find, but our results demonstrate that graphene remains graphene even if it is coated with ," says Norbert Nickel.

Their measurements of carrier mobility using the Hall-effect showed that the mobility of charge carriers within the embedded graphene layer is roughly 30 times greater than that of conventional zinc oxide based contact layers. Says Gluba: "Admittedly, it's been a real challenge connecting this thin contact layer, which is but one atomic layer thick, to external contacts. We're still having to work on that." Adds Nickel: "Our thin film technology colleagues are already pricking up their ears and wanting to incorporate it." The researchers obtained their measurements on one square centimeter samples, although in practice it is feasible to coat much larger areas than that with graphene.

This work was recently published in Applied Physics Letters Vol. 103, 073102 (2013).

Explore further: Graphene is thinnest known anti-corrosion coating

More information: DOI: 10.1063/1.4818461

Related Stories

Graphene is thinnest known anti-corrosion coating

February 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears in ACS Nano.

Topographical approaches to measuring graphene thickness

September 28, 2012

(—Graphene has long shown potential for use in electronics, but difficulties in producing the material to a high enough quality has so far prevented the commercialisation of graphene-based devices.

Graphene on its way to conquer Silicon Valley

July 9, 2013

The remarkable material graphene promises a wide range of applications in future electronics that could complement or replace traditional silicon technology. Researchers of the Electronic Properties of Materials Group at ...

Express tool for graphene quality control

August 29, 2013

The National Physical Laboratory (NPL) has collaborated with Chalmers University of Technology and Linköping University in Sweden to help develop a fast and inexpensive tool for quality control of graphene grown on silicon ...

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (9) Oct 08, 2013
If I am reading this correct, and bear with me for a moment...

IF you could create light within a closed system (similar to electrons in a superconductor @ Kelvin 0 degrees) in a loop, with a completely transparent graphene/silicon layer are we still creating energy? Is the assertion that we have or we could create more efficient solar cells from this material?

Because I am having trouble understanding how you bump the electron off? If the photon carries on at the same velocity/vector regardless of having passed through the material - does that not mean we have virtually unlimited energy?

A closed loop with x amount of light fed into a continuous loop, constantly bumping electrons off the silicon/graphene sandwhich?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.