Low-priced plastic photovoltaics

Oct 22, 2013
This is an image of the polymer blend morphology without (left) and with (right) nanowires. Credit: Imperial College/S. Wood & J. Bailey

Photovoltaic devices, which tap the power of the sun and convert it to electricity, offer a green—and potentially unlimited—alternative to fossil fuel use. So why haven't solar technologies been more widely adopted?

Quite simply, "they're too expensive," says Ji-Seon Kim, a senior lecturer in experimental solid-state physics at Imperial College London, who, along with her colleagues, has come up with a technology that might help bring the prices down.

The scientists describe their new approach to making cheaper, more efficient in a paper in The Journal of Chemical Physics, produced by AIP Publishing.

"To collect a lot of sunlight you need to cover a large area in solar panels, which is very expensive for traditional inorganic—usually silicon—photovoltaics," explains Kim. The high costs arise because traditional panels must be made from high purity crystals that require high temperatures and vacuum conditions to manufacture.

A cheaper solution is to construct the out of organic compounds—building what are essentially plastic . Organic semiconducting materials, and especially polymers, can be dissolved to make an ink and then simply "printed" in a very thin layer, some 100 billionths of a meter thick, over a large area. "Covering a large area in plastic is much cheaper than covering it in silicon, and as a result the cost per Watt of electricity-generating capacity has the potential to be much lower," she says.

One major difficulty with doing this, however, is controlling the arrangement of polymer molecules within the thin layer. In their paper, Kim and colleagues describe a new method for exerting such control. "We have developed an advanced structural probe technique to determine the molecular packing of two different polymers when they are mixed together," she says. By manipulating how the molecules of the two different polymers pack together, Kim and her colleagues created ordered pathways—or "nanowires"—along which electrical charges can more easily travel. This enables the solar cell to produce more electrical current, she said.

"Our work highlights the importance of the precise arrangement of in a polymer solar cell for it to work efficiently," says Kim, who expects to reach the commercial market within 5 to 10 years.

Explore further: How the hummingbird achieves its aerobatic feats

More information: The article, "Understanding the Relationship between Molecular Order and Charge Transport Properties in Conjugated Polymer Based Organic Blend Photovoltaic Devices" by Sebastian Wood, Jong Soo Kim, David T. James, Wing C. Tsoi, Craig E. Murphy and Ji-Seon Kim appears in The Journal of Chemical Physics. dx.doi.org/10.1063/1.4816706

Related Stories

Recommended for you

How the hummingbird achieves its aerobatic feats

17 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Oct 23, 2013
Currently production costs are below $0.70 per Watt. That is not expensive.
praos
1.3 / 5 (12) Nov 11, 2013
With PV cost aproaching $0.5/W, while installation costs hower about $2/W, the only sane way is not to further decrease the cost, but to increase efficiency.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.