Second life for an assembly factor

Oct 21, 2013
Credit: Steve Ford / sxc.hu

(Phys.org) —LMU researchers have identified a novel protein that is required for the assembly of photosynthetic reaction centers. Moreover, their findings suggest that it evolved from a pre-existing factor that served a different function.

Life as we know it would be inconceivable without photosynthesis, as it supplies the oxygen and energy-rich chemical compounds that non-photosynthetic organisms like ourselves depend on. The energy required for these feats comes in the form of solar radiation, which is captured by so-called photosystems that are found in , algae and certain types of bacteria. Photosystems act as light collectors, and come in two different types, which are "tuned" to harvest light of different wavelengths.

The photosystems themselves are large molecular complexes made up of many different proteins, pigment molecules and other cofactors. "Correct assembly of such multiprotein complexes requires the action of so-called accessory proteins. These are factors that are essential for the construction of certain intermediates or subassemblies, but are not part of the mature, functional complex," says LMU biologist Professor Dario Leister.

Retooling the photosynthetic apparatus

Using thale cress (Arabidopsis thaliana) as a model system, Leister and his colleagues have identified a previously unknown assembly factor which they call PAM68L. In their latest study, they have shown that this protein is required for formation of the so-called NDH complex – a component of the photosynthetic apparatus that plays an important role in energy metabolism and also helps the plant to cope with certain kinds of stress.

"Interestingly, this protein shows considerable similarity to PAM68, which we identified as being necessary for the correct assembly of photosystem II in 2010," says Leister (hence the name: PAM68L stands for "PAM68-like"). The researchers infer from this that the PAM68 gene was duplicated in the course of the evolution of . One copy retained the original function, leaving the PAM68L gene free to diverge from its ancestor. The latter was subsequently recruited to play a role in the assembly of the NDH complex. This scenario is supported by the fact that mosses and cyanobacteria, which are evolutionarily older than flowering plants and have a simpler NDH complex, also lack PAM68L. "Thus, to facilitate the assembly of their more intricate NDH complex, higher plants took advantage of pre-existing cell components, such as PAM68L, that had evolved novel capabilities equipping them for new tasks. This is a very interesting phenomenon in evolution," says Leister.

Explore further: Team publishes evidence for natural alternative to antibiotic use in livestock

More information: Plant Cell, 2013.

Related Stories

Photosynthesis: The last link in the chain

Jan 04, 2013

For almost 30 years, researchers have sought to identify a particular enzyme that is involved in regulating electron transport during photosynthesis. A team at Ludwig-Maximilians-Universität (LMU) in Munich has now found ...

Membranes in tight corners

Jul 10, 2013

Photosynthesis takes place in specialized membrane systems, made up of stacked disks linked together by unstacked planar leaflets. A team of Ludwig-Maximilians-Universitaet (LMU) in Munich has now identified ...

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.