Second life for an assembly factor

Oct 21, 2013
Credit: Steve Ford / sxc.hu

(Phys.org) —LMU researchers have identified a novel protein that is required for the assembly of photosynthetic reaction centers. Moreover, their findings suggest that it evolved from a pre-existing factor that served a different function.

Life as we know it would be inconceivable without photosynthesis, as it supplies the oxygen and energy-rich chemical compounds that non-photosynthetic organisms like ourselves depend on. The energy required for these feats comes in the form of solar radiation, which is captured by so-called photosystems that are found in , algae and certain types of bacteria. Photosystems act as light collectors, and come in two different types, which are "tuned" to harvest light of different wavelengths.

The photosystems themselves are large molecular complexes made up of many different proteins, pigment molecules and other cofactors. "Correct assembly of such multiprotein complexes requires the action of so-called accessory proteins. These are factors that are essential for the construction of certain intermediates or subassemblies, but are not part of the mature, functional complex," says LMU biologist Professor Dario Leister.

Retooling the photosynthetic apparatus

Using thale cress (Arabidopsis thaliana) as a model system, Leister and his colleagues have identified a previously unknown assembly factor which they call PAM68L. In their latest study, they have shown that this protein is required for formation of the so-called NDH complex – a component of the photosynthetic apparatus that plays an important role in energy metabolism and also helps the plant to cope with certain kinds of stress.

"Interestingly, this protein shows considerable similarity to PAM68, which we identified as being necessary for the correct assembly of photosystem II in 2010," says Leister (hence the name: PAM68L stands for "PAM68-like"). The researchers infer from this that the PAM68 gene was duplicated in the course of the evolution of . One copy retained the original function, leaving the PAM68L gene free to diverge from its ancestor. The latter was subsequently recruited to play a role in the assembly of the NDH complex. This scenario is supported by the fact that mosses and cyanobacteria, which are evolutionarily older than flowering plants and have a simpler NDH complex, also lack PAM68L. "Thus, to facilitate the assembly of their more intricate NDH complex, higher plants took advantage of pre-existing cell components, such as PAM68L, that had evolved novel capabilities equipping them for new tasks. This is a very interesting phenomenon in evolution," says Leister.

Explore further: Genomes of malaria-carrying mosquitoes sequenced

More information: Plant Cell, 2013.

Related Stories

Photosynthesis: The last link in the chain

Jan 04, 2013

For almost 30 years, researchers have sought to identify a particular enzyme that is involved in regulating electron transport during photosynthesis. A team at Ludwig-Maximilians-Universität (LMU) in Munich has now found ...

Membranes in tight corners

Jul 10, 2013

Photosynthesis takes place in specialized membrane systems, made up of stacked disks linked together by unstacked planar leaflets. A team of Ludwig-Maximilians-Universitaet (LMU) in Munich has now identified ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

12 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.