Key mechanism behind herpes revealed

October 2, 2013

Researchers at Lund University in Sweden have for the first time managed to measure the internal pressure that enables the herpes virus to infect cells in the human body. The discovery paves the way for the development of new medicines to combat viral infections. The results indicate good chances to stop herpes infections in the future.

A virus comprises a thin shell of protein, within which are its . A long-standing theory has been that a virus has high internal pressure because it is so tightly packed with genetic material. The pressure means that they can infect a cell by ejecting the genes at high force and speed. The cell is then duped into becoming a small 'virus factory' that produces new viruses, multiplying the number. However, no one has previously succeeded in measuring the internal pressure of a virus that can infect humans.

Biochemist Alex Evilevitch from Lund University and Carnegie Mellon University in Pittsburgh, USA, has measured the pressure inside the HSV-1 ( 1) together with a research team in the US. The study has been published in the Journal of the American Chemical Society, JACS.

"The pressure explains the way all eight known herpes viruses that infect humans inject their genes into our cells", said Alex Evilevitch.

This includes both of the two most common forms of herpes, which cause cold sores and genital herpes, as well as Varicella zostervirus, which causes chickenpox and shingles, Epstein-Barr virus, which leads to glandular fever, and viruses linked to various forms of cancer.

In previous studies, Alex Evilevitch has also demonstrated that bacteriophages, viruses that infect bacteria, have a high internal pressure. Bacteriophages and herpes viruses separated in evolution billions of years ago, but have retained the same pressure-driven method of ejecting their genes. Evilevitch therefore believes this must be a key mechanism for viral infection.

The discovery could lead to new drugs. The medication that exists to combat is very specialised and if a virus mutates, which often happens, the medicine can become less effective. However, if a treatment could be developed that reduces the pressure within the virus shell, it would probably be possible to fight many different types of viral infection with the same drug. In addition, the medication would work even if the virus mutated, because mutations do not affect the internal pressure of a .

"The results of the present study are the first step towards the goal of developing a drug of this type, and we already have positive preliminary data that shows that the infection can be stopped. It feels great to know that this research will help to fight infections that are as yet incurable", said Alex Evilevitch.

Explore further: Energy of attacking virus revealed

Related Stories

Energy of attacking virus revealed

January 20, 2010

For the first time the research world has managed to measure the energy that is used when a virus infects a cell. The aim is to find a way to reduce the amount of energy inside the virus and thereby ultimately find a medicine ...

Recommended for you

Scientists create revolutionary material to clean oil spills

November 30, 2015

Deakin University scientists have manufactured a revolutionary material that can clean up oil spills, which could save the earth from potential future disasters such as any repeat of the 2010 Gulf Coast BP disaster that wreaked ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 02, 2013
Pop the balloon!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.