Key mechanism behind herpes revealed

Oct 02, 2013

Researchers at Lund University in Sweden have for the first time managed to measure the internal pressure that enables the herpes virus to infect cells in the human body. The discovery paves the way for the development of new medicines to combat viral infections. The results indicate good chances to stop herpes infections in the future.

A virus comprises a thin shell of protein, within which are its . A long-standing theory has been that a virus has high internal pressure because it is so tightly packed with genetic material. The pressure means that they can infect a cell by ejecting the genes at high force and speed. The cell is then duped into becoming a small 'virus factory' that produces new viruses, multiplying the number. However, no one has previously succeeded in measuring the internal pressure of a virus that can infect humans.

Biochemist Alex Evilevitch from Lund University and Carnegie Mellon University in Pittsburgh, USA, has measured the pressure inside the HSV-1 ( 1) together with a research team in the US. The study has been published in the Journal of the American Chemical Society, JACS.

"The pressure explains the way all eight known herpes viruses that infect humans inject their genes into our cells", said Alex Evilevitch.

This includes both of the two most common forms of herpes, which cause cold sores and genital herpes, as well as Varicella zostervirus, which causes chickenpox and shingles, Epstein-Barr virus, which leads to glandular fever, and viruses linked to various forms of cancer.

In previous studies, Alex Evilevitch has also demonstrated that bacteriophages, viruses that infect bacteria, have a high internal pressure. Bacteriophages and herpes viruses separated in evolution billions of years ago, but have retained the same pressure-driven method of ejecting their genes. Evilevitch therefore believes this must be a key mechanism for viral infection.

The discovery could lead to new drugs. The medication that exists to combat is very specialised and if a virus mutates, which often happens, the medicine can become less effective. However, if a treatment could be developed that reduces the pressure within the virus shell, it would probably be possible to fight many different types of viral infection with the same drug. In addition, the medication would work even if the virus mutated, because mutations do not affect the internal pressure of a .

"The results of the present study are the first step towards the goal of developing a drug of this type, and we already have positive preliminary data that shows that the infection can be stopped. It feels great to know that this research will help to fight infections that are as yet incurable", said Alex Evilevitch.

Explore further: Video: How did life on Earth begin?

Related Stories

Pressurized virus blasts its infectious DNA into human cells

Jul 24, 2013

The virus that causes those painful lip blisters known as cold sores has an internal pressure eight times higher than a car tire, and uses it to literally blast its infectious DNA into human cells, scientists are reporting ...

Study reveals new approach for stopping herpes infections

Mar 25, 2013

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a novel strategy for preventing infections due to the highly common herpes simplex viruses, the microbes responsible for causing genital ...

Novel vaccine reduces shedding of genital herpes virus

Sep 12, 2013

Sexually transmitted infection researchers potentially have reached a milestone in vaccine treatment for genital herpes, according to a report to be presented at the Interscience Conference on Antimicrobial Agents and Chemotherapy ...

Energy of attacking virus revealed

Jan 20, 2010

For the first time the research world has managed to measure the energy that is used when a virus infects a cell. The aim is to find a way to reduce the amount of energy inside the virus and thereby ultimately find a medicine ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

nanotech_republika_pl
not rated yet Oct 02, 2013
Pop the balloon!