Taking the Internet underwater

Oct 14, 2013 by Cory Nealon
Taking the Internet underwater
Doctoral candidates in Melodia's lab, Hossain and Kulhandjian (above), dropped two, 40-pound sensors into the water and then typed a command into a laptop. Credit: Douglas Levere

(Phys.org) —Wireless networks span the globe. But like a frightened toddler, they don't go underwater.

That may soon change because University at Buffalo researchers are developing a deep-sea Internet. The could lead to improvements in , offshore oil and natural gas exploration, surveillance, pollution monitoring and other activities.

"A submerged wireless network will give us an unprecedented ability to collect and analyze data from our oceans in real time, said Tommaso Melodia, UB associate professor of electrical engineering and the project's lead researcher. "Making this information available to anyone with a smartphone or computer, especially when a tsunami or other type of disaster occurs, could help save lives."

Melodia and his students will present a paper, "The Internet Underwater: An IP-compatible Protocol Stack for Commercial Undersea Modems," at the 8th annual International Conference on Underwater Networks & Systems. Hosted by the Association for Computing Machinery, the conference runs Nov. 11-13 in Taiwan.

Land-based rely on radio waves that transmit data via satellites and antennae. Unfortunately, radio waves work poorly underwater. This is why agencies like the Navy and National Oceanic and Atmospheric Administration use sound wave-based techniques to communicate underwater.

For example, NOAA relies on acoustic waves to send data from tsunami sensors on the sea floor to surface buoys. The buoys convert the acoustic waves into radio waves to send the data to a satellite, which then redirects the back to land-based computers.

Many systems worldwide employ this paradigm, says Melodia, but sharing data between them is difficult because each system often has a different infrastructure. The framework Melodia is developing would solve that problem. It would transmit data from existing and planned underwater sensor networks to laptops, smartphones and other wireless devices in real time.

It would be, in other words, a deep-sea Internet.

Melodia tested the system recently in Lake Erie, a few miles south of downtown Buffalo. Hovannes Kulhandjian and Zahed Hossain, who are both doctoral candidates in his lab, dropped two, 40-pound sensors into the water. Kulhandjian typed a command into a laptop. Seconds later, a series of high-pitched chirps ricocheted off a nearby concrete wall, an indication that the test worked.

The framework has many applications, including linking together buoy networks that detect tsunamis. In these situations, it could deliver a more reliable warning thereby increasing the odds that coastal residents can evacuate, Melodia said.

It may also help collect oceanographic data and monitoring pollution. The framework will encourage collaboration among researchers and, potentially, eliminate the duplicative deployments of sensors and other equipment, he said.

There are also military and law enforcement applications. For example, drug smugglers recently have deployed makeshift submarines to clandestinely ferry narcotics long distances underwater. An improved, more robust underwater sensor network could help spot these vessels.

The framework could also be useful to the energy industry, which typically relies on seismic waves to search for underwater oil and natural gas. Industry's efforts could be aided by network of interconnected devices working together, he said.

The project, which is funded by the National Science Foundation, is a collaborative effort that includes UB researchers Stella N. Batalama and Dimitris A. Pados, professors of electrical engineering; Weifeng Su, associate professor of ; and Joseph Atkinson, professor of environmental engineering.

Explore further: Intellectual property in 3D printing

Related Stories

Underwater sensor successfully tested

Jun 05, 2013

As part of the Dutch STW SeaSTAR project researchers at the University of Twente have conducted tests using underwater communication and location finding at the Rutbeek water recreation park near Enschede. ...

Acoustic waves warn of tsunami

Aug 29, 2013

An early warning system against tsunamis has been developed and tailored for the need of the Mediterranean, but preparedness on the ground is paramount to ensuring peoples' safety.

Recommended for you

Intellectual property in 3D printing

Apr 16, 2015

The implications of intellectual property in 3D printing have been outlined in two documents created for the UK government by Bournemouth University's Dinusha Mendis and Davide Secchi, and Phil Reeves of Econolyst Ltd.

World-record electric motor for aircraft

Apr 16, 2015

Siemens researchers have developed a new type of electric motor that, with a weight of just 50 kilograms, delivers a continuous output of about 260 kilowatts – five times more than comparable drive systems. ...

Space open for business, says Electron launch system CEO

Apr 15, 2015

Space, like business, is all about time and money, said Peter Beck, CEO of Rocket Lab, a US company with a New Zealand subsidiary. The problem, he added, is that, in cost and time, space has remained an incredibly ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Neinsense99
1 / 5 (1) Oct 14, 2013
Oh great, now we'll get trolled by Aquaman...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.