Water impurities key to an icicle's ripples

Oct 09, 2013
This is a natural ripply icicle, collected to measure water composition. Credit: Stephen Morris

A group of physicists from Canada have been growing their own icicles in a lab in the hope of solving a mystery that has, up until now, continued to puzzle scientists.

The presence of characteristic along the surface of icicles, which remarkably have the same wavelength no matter how big the icicle or where in the world it grows, have led to several studies examining exactly how the ripples form.

In a new study published today, 10 October, in the Institute of Physics and German Physical Society's New Journal of Physics, the researchers, from the University of Toronto, have proposed that small impurities in the may be a critical factor in the process.

An analysis of 67 icicles, grown under carefully controlled conditions in a refrigerated box, showed that icicles grown using pure distilled water exhibited no ripples, but those grown from water with salt impurities did have the characteristic ripples.

Furthermore, the ripples grew at a much faster pace, and therefore reached higher amplitudes, when there was a higher concentration of salt in the water. The overall shape of the icicle also became more distorted.

While the research has been motivated purely by the curiosity about patterns in nature, it is possible that a deeper understanding of the formation of icicles may have real world applications, specifically in engineering.

Lead author of the research, Professor Stephen Morris, said: "Ice build-up on structures during freezing rain events is a serious hazard. Power lines, ships, bridges and airplanes must all be protected from, and designed to withstand, ice accumulation. In most engineering applications, only the total amount of ice really matters, not its precise shape. We are interested in the shape, which is much less understood."

This video is not supported by your browser at this time.
These are movies of three icicles grown under identical conditions of ambient temperature, water supply rate, and nozzle temperature. (1) was made with distilled water only; (2) was made with distilled water plus NaCl with a mass fraction of (8.0 +/- 0.2 X 10^{-5}; (3) was made with distilled water plus NaCl with a mass fraction of (1.278 +/- 0.002) X 10^{-3}. The icicle grows from a rotating support over a period of about 10 hours. The support looks like its rotating fast, but actually takes about four minutes per rotation. Credit: Antony Chen and Stephen Morris, Nonlinear Physics, University of Toronto

There are currently two general theories of why ripples form on icicles, the first of which attributes the formation to the way that heat is removed on the peak of a ripple. It is believed that water freezes more quickly on the peaks because heat is removed quicker from these areas; therefore, any small defect on the icicle can cause ice to build up more quickly in these regions and trigger the formation of ripples.

An alternate theory puts the ripples down to between the freezing water as it flows in a thin layer over the icicle and the surrounding air – if the surface tension is high, it is predicted that the ripples will grow at a slower pace and reach lower amplitudes.

This video is not supported by your browser at this time.
This is a time-lapse movie of a laboratory grown icicle with an almost perfect self-similar shape. The icicle grows from a rotating support over a period of about 10 hours. The support looks like its rotating fast, but actually takes about four minutes per rotation. It was grown from distilled water with gently stirred air. These conditions turn out to favor the ideal shape. Credit: Antony Chen and Stephen Morris, Nonlinear Physics, University of Toronto

In their experiments, the researchers carefully controlled the temperature, the flow rate of the water, the composition of the air and the state of its flow around the icicle. The icicles were grown from a wooden support which rotated within the refrigerated box so that the icicles grew evenly and could be imaged from all sides with a camera.

Icicles were grown from pure distilled water, which was then contaminated separately with salt and a surfactant. The researchers also collected melting water from natural icicles on a nearby roof in Toronto and performed a chemical analysis to see if it was sufficiently impure to account for natural ripples – the results showed that it was.

Whilst the presence of encouraged the formation of ripples, the researchers also found that the presence of the surfactant, which lowered the surface tension of the water, did not increase the growth rate of ripples, which contradicts one of the previous theories.

"Existing theories of how icicle ripples form have been supported by very few observations of natural or lab-grown icicles. We have performed a really controlled and complete study of icicles ripples that has never been done before.

"Our results have provided strong empirical evidence, but as of yet we don't have a theoretical explanation as to why the impurities have this effect. Neither do we have a theory for why the ripples have a universal wavelength – this still remains a central mystery," continued Professor Morris.

Explore further: New filter could advance terahertz data transmission

More information: "On the origin and evolution of icicle ripples" Chen et al 2013 New J. Phys. 15 103012. iopscience.iop.org/1367-2630/15/10/103012/article

Related Stories

Icicle shape stranger than thought (w/ Video)

Dec 21, 2010

Look out your window at the icicles beginning to grow on the edges of roofs and car bumpers, and you might think that all icicles are shaped the same -- long, straight and pointy.

Transverse instability of megaripples

Mar 20, 2012

Aeolian ripples, which form regular patterns on sand beaches and desert floors, indicate the fundamental instability of flat sand surfaces under the wind-induced transport of sand grains.

Scientists explore the physics of bumpy roads

Jul 07, 2009

sand or gravel or snow -- develops ripples that make driving a very shaky experience. A team of physicists from Canada, France and the United Kingdom have recreated this "washboard" phenomenon in the lab with ...

Rethinking surface tension

Aug 30, 2013

(Phys.org) —If you've ever watched a drop of water form into a bead or a water strider scoot across a pond, you are familiar with a property of liquids called surface tension.

Ironing out the causes of wrinkles

Jul 15, 2010

As a sign of aging or in a suit, wrinkles are almost never welcome, but two papers in the current issue of Physical Review Letters offer some perspective on what determines their size and shape in soft materi ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.