Image: Spitzer at 10

October 1, 2013
The Carina Nebula. Credit: NASA/JPL-Caltech

The infrared observatory Spitzer has been at work for 10 years, revealing the cool dusty regions where stars and planets form, as well as shedding light on planets, exoplanets, stars and galaxies. Spitzer data have brought a better understanding of the Milky Way's spiral arm structure, led to the discovery of Saturn's largest and faintest ring, and the observatory was the first to detect light from an exoplanet. Spitzer has enabled astronomers to investigate the composition, dynamics and atmospheres of exoplanets.

This image shows the Carina Nebula, a region where dust and gas are shaped by winds and radiation from the massive star Eta Carinae (100 times the mass of the Sun). Infrared wavelength radiation from the star destroys dust, leaving cavities within the nebula surrounded by higher density "spikes".

This Spitzer image, reprocessed as part of the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project, uses Spitzer's , with emission from wavelengths of 3.6 µm shown in blue, 4.5 µm in green and 8.0 µm in red. In the composite image, the dust appears red and the hotter gas, green. Spitzer was originally called the Space Infrared Telescope Facility, and was renamed after its launch in honour of the late astronomer Lyman Spitzer. It is one of NASA's Great Observatories, together with the Hubble Space Telescope, the Chandra X-ray Observatory and the now-defunct Compton Gamma Ray Observatory. Spitzer used up its coolant for longer-wavelength observations in 2009, and is now continuing to work in the "warm mission phase".

This image is published in the October 2013 issue of Astronomy & Geophysics.

Explore further: Stars gather in 'downtown' Milky Way

Related Stories

Stars gather in 'downtown' Milky Way

March 21, 2011

(PhysOrg.com) -- The region around the center of our Milky Way galaxy glows colorfully in this new version of an image taken by NASA's Spitzer Space Telescope.

Space Image: Disappearing Act

March 23, 2011

(PhysOrg.com) -- This swirling landscape of stars is known as the North America Nebula. In visible light, the region resembles North America, but in this new infrared view from NASA's Spitzer Space Telescope, the continent ...

Making a spectacle of star formation in Orion

June 30, 2011

(PhysOrg.com) -- Looking like a pair of eyeglasses only a rock star would wear, this nebula brings into focus a murky region of star formation. NASA's Spitzer Space Telescope exposes the depths of this dusty nebula with its ...

Space Image: North American Nebula

October 19, 2011

This swirling landscape of stars is known as the North America Nebula. In visible light, the region resembles North America, but in this image infrared view from NASA's Spitzer Space Telescope, the continent disappears.

Spiral Galaxy NGC 3627

July 15, 2013

(Phys.org) —The spiral galaxy NGC 3627 is located about 30 million light years from Earth. This composite image includes X-ray data from NASA's Chandra X-ray Observatory (blue), infrared data from the Spitzer Space Telescope ...

Spitzer telescope celebrates ten years in space

August 23, 2013

(Phys.org) —Ten years after a Delta II rocket launched NASA's Spitzer Space Telescope, lighting up the night sky over Cape Canaveral, Fla., the fourth of the agency's four Great Observatories continues to illuminate the ...

Recommended for you

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.