Grafted limb cells acquire molecular 'fingerprint' of new location, study shows

Oct 24, 2013
Grafted limb cells acquire molecular 'fingerprint' of new location, study shows
This image shows grafted tissue (green) on an axolotl limb at the onset of regeneration (left) and after the process is complete. Credit: UC Irvine

Cells triggering tissue regeneration that are taken from one limb and grafted onto another acquire the molecular "fingerprint," or identity, of their new location, UC Irvine developmental biologists have discovered.

The findings provide a better understanding of how grafted changes its identity to match the host tissue environment during the process of regeneration and bring scientists closer to establishing regenerative therapies for humans. The results also challenge the conventional assumption in regeneration biology that cellular properties are predetermined.

By examining from blastema tissue in salamanders – amphibians that can regrow lost limbs – the researchers learned that grafted tissue does not spur growth of structures consistent with the region of the limb it came from, but rather it transforms into the cell signature of the limb region it's been grafted onto. This ability of cells to alter identity from the old location to the new location is called positional plasticity.

"This work provides the first piece of molecular evidence supporting the idea that early- and late-stage blastema cells receive information about the 'blueprint' of the missing limb from the host site," said Catherine D. McCusker, postdoctoral fellow in developmental & cell biology and lead author on the study.

The blastema is a group of cells that accumulate at the site of a severed limb in organisms such as salamanders and re-create the missing appendage. It's formed when regenerating nerve fibers from the limb stump interact with thin skin that covers the surface of the wound.

This interaction attracts cells from the stump tissue that undergo a process called dedifferentiation, in which the cells revert to a more embryonic state. Once a blueprint of the missing limb structures is established in the blastema, these cells gradually differentiate into the replacement limb.

In her study, McCusker found that signals from nerve fibers played a crucial role in sustaining the cells' ability to change their identity to suit a new environment throughout the course of regeneration. She hypothesizes that it's important for the to maintain positional plasticity in the blastema until a complete blueprint of the new limb is formulated.

These findings also have potential implications in cancer biology, as too are strongly influenced by the surrounding tissue environment.

"Our study shows that the blueprint, which drives the behavior of cells, can be manipulated," McCusker noted. "Thus, understanding how differing environments affect blastema cell behavior will provide valuable insight into how to control the behavior of cancer cells."

The study appeared in the Sept. 27 issue of the open-access journal PLOS ONE.

Explore further: NYSCF Research Institute announces largest-ever stem cell repository

More information: PLOS ONE paper: www.plosone.org/article/info%3… journal.pone.0077064

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Precise and programmable biological circuits

30 minutes ago

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

Crowdsourced power to solve microbe mysteries

Oct 22, 2014

University of New South Wales scientists hope to unlock the secrets of millions of marine microbes from waters as far apart as Sydney's Botany Bay and the Amazon River in Brazil, with the help of an international ...

Reading a biological clock in the dark

Oct 21, 2014

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

User comments : 0