Fungus that causes white-nose syndrome in bats proves hardy survivor

Oct 25, 2013 by Diana Yates
Researchers found that the fungus that causes white-nose syndrome in bats can survive under a variety of conditions and can live and grow on most carbon and nitrogen sources in caves. Credit: L. Brian Stauffer

(Phys.org) —After taking an in-depth look at the basic biology of a fungus that is decimating bat colonies as it spreads across the U.S., researchers report that they can find little that might stop the organism from spreading further and persisting indefinitely in bat caves.

Their report appears in the journal PLOS ONE.

The aptly named Pseudogymnoascus (Geomyces) destructans causes white-nose syndrome in . The infection strikes bats during their winter hibernation, leaving them weakened and susceptible to starvation and secondary infections. The fungus, believed to have originated in Europe, was first seen in New York in the winter of 2006-2007, and now afflicts bats in more than two dozen states. According to the U.S. Fish and Wildlife Service, P. destructans has killed more than 5.5 million bats in the U.S. and Canada.

The fungus thrives at low temperatures, and spreads to bats whose body temperature drops below 20 degrees Celsius (68 degrees Fahrenheit) when they are hibernating in infected caves. Previous research has shown that the fungus persists in caves even after the bats are gone.

The new study, from researchers at the Illinois Natural History Survey at the University of Illinois, found that the fungus can make a meal out of just about any carbon source likely to be found in caves, said graduate student Daniel Raudabaugh, who led the research under the direction of survey mycologist Andrew Miller.

"It can basically live on any complex , which encompasses insects, undigested insect parts in guano, wood, dead fungi and cave fish," Raudabaugh said. "We looked at all the different nitrogen sources and found that basically it can grow on all of them. It can grow over a very wide range of pH; it doesn't have trouble in any pH unless it's extremely acidic."

"P. destructans appears to create an environment that should degrade the structure of keratin, the main protein in ," Raudabaugh said. It has enzymes that break down urea and proteins that produce a highly alkaline environment that could burn the skin, he said. Infected bats often have holes in their skin, which can increase their susceptibility to other infections.

The fungus can subsist on other proteins and lipids on the bats' skin, as well as glandular secretions, the researchers said.

"P. destructans can tolerate naturally occurring inhibitory sulfur compounds, and elevated levels of calcium have no effect on fungal growth," Raudabaugh said.

The only significant limitation of the fungus besides temperatures above 20 degrees Celsius has to do with its ability to take up water, Raudabaugh said. Its cells are leaky, making it hard for the fungus to absorb water from surfaces, such as dry wood, that have a tendency to cling to moisture. But in the presence of degraded fats or free fatty acids, like those found on the skin of living or dead animals, the fungus can draw up water more easily, he said.

"All in all the news for hibernating bats in the U.S. is pretty grim," Miller said.

"When the fungus first showed up here in Illinois earlier this year we went from zero to 80 percent coverage in a little more than a month," he said. The team led by U. of I. researchers that discovered the fungus in the state found a single infected bat in one northern Illinois cave, he said. Several weeks later most of the bats in that cave were infected.

Although many studies have been done on the fungal genome and on the bats, Miller said, Raudabaugh is the first to take an in-depth look at the basic biology of the fungus.

"Dan found that P. destructans can live perfectly happily off the remains of most organisms that co-inhabit the caves with the bats," Miller said. "This means that whether the bats are there or not, it's going to be in the caves for a very long time."

The paper is titled "Nutritional Capability of and Substrate Suitability for Pseudogymnoascus destructans, the Causal Agent of White-Nose Syndrome."

Explore further: Rising temperatures can be hard on dogs

More information: www.plosone.org/article/info:d… journal.pone.0078300

Related Stories

Bat-killing white-nose syndrome continues to spread

Apr 15, 2013

It was a typically cold winter day when Greg Turner, a wildlife biologist with the Pennsylvania Game Commission, unlocked the gate at the historic Durham Mine in upper Bucks County, Pa., and stepped into the darkness.

Recommended for you

Rising temperatures can be hard on dogs

Jul 25, 2014

The "dog days of summer" are here, but don't let the phrase fool you. This hot time of year can be dangerous for your pup, says a Kansas State University veterinarian.

Monkeys fear big cats less, eat more, with humans around

Jul 25, 2014

Some Monkeys in South Africa have been found to regard field scientists as human shields against predators and why not if the alternative is death by leopard? The researchers found the monkeys felt far safer ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

katesisco
1 / 5 (10) Oct 25, 2013
What about using sugar traps?
Since condensed sugar products like honey, molasses, sugar with low water activity which makes the product suck water from the air, a sugar trap should trap the fungus seeking water because the sugar product draws water.
Worth a try.
rkolter
not rated yet Oct 25, 2013
The logistics behind dehumidifying a cave system would be staggering in most cases. And the fungus does not move about in search of water.

Lastly, I am guessing (but haven't confirmed) that they probably tested what the humidity requirements for the fungus were too. If it had a narrow range of humidity levels that it strongly preferred, it would have been mentioned.