Extrusive volcanism formed the Hawaiian Islands, study determines

Oct 07, 2013
Mānoa: Extrusive volcanism formed the Hawaiian Islands, study determines
3-D view of topography & seafloor relief of Hawaiian Islands; colors show residual gravity anomaly.

(Phys.org) —A recent study by researchers at the University of Hawaiʻi at Mānoa School of Ocean and Earth Science and Technology (SOEST) and the University of Rhode Island (URI) changes the understanding of how the Hawaiian Islands formed. Scientists have determined that it is the eruptions of lava on the surface, extrusion, which grow Hawaiian volcanoes, rather than internal emplacement of magma, as was previously thought.

Before this work, most scientists thought that Hawaiian volcanoes grew primarily internally – by intruding into rock and solidifying before it reaches the surface. While this type of growth does occur, along Kilauea's East Rift Zone (ERZ), for example, it does not appear to be representative of the overall history of how the Hawaiian Islands formed. Previous estimates of the internal-to-extrusive ratios (internally emplaced magma versus extrusive lava flow) were based on observations over a very short time frame, in the geologic sense.

Ashton Flinders (M.S. from UHM), lead author and graduate student at URI, and colleagues compiled historical land-based gravity surveys with more recent surveys on the Big Island of Hawaii (in partnership with Jim Kauhikaua of the U.S. Geological Survey – Hawai?i Volcano Observatory) and Kaua?i, along with marine surveys from the National Geophysical Data Center and from the UH R/V Kilo Moana. These types of data sets allow scientists to infer processes that have taken place over longer time periods.

"The discrepancy we see between our estimate and these past estimates emphasizes that the short-term processes we currently see in Hawai?i (which tend to be more intrusive) do not represent the predominant character of their volcanic activity," said Flinders.

"This could imply that over the long-term, Kilauea's ERZ will see less seismic activity and more eruptive activity that previously thought. The 3-decade-old eruption along Kilauea's ERZ could last for many, many more decades to come," said Dr. Garrett Ito, Professor of Geology and Geophysics at UHM and co-author.

"I think one of the more interesting possible implications is how the intrusive-to-extrusive ratio impacts the stability of the volcano's flank. Collapses occur over a range of scales from as large as the whole flank of a volcano, to bench collapses on the south coast of Big Island, to small rock falls," said Flinders. Intrusive magma is more dense and structurally stronger than lava flows. "If the bulk of the are made from these weak extrusive flows then this would account for some of the collapses that have been documented, but this is mainly just speculation as of now."

The authors hope this new density model can be used as a starting point for further crustal studies in the Hawaiian Islands.

Explore further: Hawaiian Islands formed through extrusive volcanic activity

More information: Flinders, A. et al. Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes, Geophysical Research Letters, Volume 40, Issue 13, pages 3367–3373, 16 July 2013. DOI: 10.1002/grl.50633

Related Stories

Hawaiian Islands formed through extrusive volcanic activity

Sep 03, 2013

Scientists generally believe that the Hawaiian Islands formed primarily through endogenous growth, or intrusion, in which hot magma intrudes into a rock and then solidifies before it reaches the surface. However, a new study ...

Tracking a hot spot

May 17, 2007

Using a state-of-the-art satellite imagery technique, researchers are able to more precisely predict volcanic activity, bringing them steps closer to understanding where an eruption may occur. A new research study, titled ...

Recommended for you

How productive are the ore factories in the deep sea?

2 hours ago

About ten years after the first moon landing, scientists on earth made a discovery that proved that our home planet still holds a lot of surprises in store for us. Looking through the portholes of the submersible ...

NASA image: Volcanoes in Guatemala

6 hours ago

This photo of volcanoes in Guatemala was taken from NASA's C-20A aircraft during a four-week Earth science radar imaging mission deployment over Central and South America. The conical volcano in the center ...

NASA sees last vestiges of Tropical Depression Jack

Apr 23, 2014

Tropical Cyclone Jack had weakened to a tropical depression when NASA and JAXA's Tropical Rainfall Measuring Mission (TRMM) satellite passed above on April 22, 2014 at 1120 UTC/7:20 a.m. EDT.

User comments : 0

More news stories

Untangling Brazil's controversial new forest code

Approved in 2012, Brazil's new Forest Code has few admirers. Agricultural interests argue that it threatens the livelihoods of farmers. Environmentalists counter that it imperils millions of hectares of forest, ...

How productive are the ore factories in the deep sea?

About ten years after the first moon landing, scientists on earth made a discovery that proved that our home planet still holds a lot of surprises in store for us. Looking through the portholes of the submersible ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...