Events coordination during embryogenesis

Oct 29, 2013
Events coordination during embryogenesis
This is an image of an embryo of the sea squirt Ciona. The nuclei of the 40 notochord cells are highlighted in red by a Brachyury antibody generated in the Di Gregorio lab. The contours of a few notochord cells are defined by green fluorescent protein. All other visible nuclei are colored in blue. Credit: Janice H. Imai and Anna Di Gregorio

A new study by Weill Cornell Medical College scientists reveals a mechanism through which the expression of genes is controlled – a finding that highlights genetic mutations that can impair the timing of gene expression. Such mutations can affect the co-ordination of key events that are required for stepwise development of an organism, and can also give rise to cancer by turning on genes at the wrong time.

The study, published October 29 in the open access journal PLOS Biology, analyzes how the timing of is regulated in the notochord, the evolutionary and developmental precursor of the backbone. The notochord is the main feature that sets humans, mice, sea squirts and related animals (collectively known as chordates) apart from flies, worms and mollusks, and is essential for their development.

A crucial player in the development of the notochord is the Brachyury gene, which encodes a DNA-binding protein that switches on the expression of numerous notochord genes and ensures their sequential deployment during the formation of this pivotal structure. It was known that Brachyury directly binds distinct DNA sequences – known as cis-regulatory modules (CRMs) – that when bound act as molecular switches and control when and where these target notochord genes are expressed. What is addressed by this new study is how these switches could be flipped on by Brachyury at different times.

To clarify this point, scientists in the laboratories of Dr. Anna Di Gregorio and Dr. Yutaka Nibu, both in the Department of Cell and Developmental Biology, systematically analyzed the structure and activity of several notochord CRMs. The model they proposed suggests that some don't appear to affect the ability of a CRM to be bound and activated but do affect the timing of expression of the gene containing the CRM. They found that in the sea squirt, timing of Brachyury switches depends on numbers: For genes that need to be turned on early in development, Brachyury binds the CRMs at multiple binding sites. However, genes that are expressed later in notochord development are controlled by Brachyury through single binding sites, while the notochord with the latest onsets are controlled by Brachyury indirectly, through a relay mechanism that involves other transcription factors. The paper shows an example of the effects of a mutation in the CRM that controls notochord expression of a laminin gene. In sea squirts as well as in humans, laminins are major components of the basement membranes and extracellular matrix that hold cells together within tissues, and are key regulators of cell migration, cell adhesion and cell proliferation. The Ciona laminin notochord CRM, which was identified in the Di Gregorio lab, requires two cooperative binding sites for Brachyury. When either one of these sites is mutated, Brachyury is unable to bind to that site, but can still bind to the remaining one.

"As a consequence, the CRM is still active in the notochord, but the full onset of its activity is delayed by a few hours, which is a crucial interval during the development of an organism," says Dr. Yutaka Nibu, adjunct assistant research professor and co-senior author of the study. "Such delay could cause a birth defect by slowing down the synthesis of a building block necessary for the organism to form properly, or might postpone the activation of a tumor suppressor gene and trigger cancer formation."

"Imagine that the gene is the light in a specific room of your house, and that the room is a specific cell in your body," adds Dr. Di Gregorio, an associate professor. "To turn the light on, you need to flip the light switch – the CRM. A mutation that inactivates your switch would keep your room in the dark. However, a mutation that delays the onset of activity of your switch would still let you turn on the light, but only at a later time. If you had to perform any task in that room that required a certain level of light, you would have to wait for a few hours until the light came on. During those precious hours, you would not be able to complete your tasks in that room, or you could have a burglar taking advantage of the darkness to wreak havoc in there."

In humans, mutations in the Brachyury gene have been associated with spina bifida, vertebral malformations, and chordoma, a rare but insidious cancer. "The work calls attention to a mostly unexplored area of gene regulation, and suggests that elusive mutations in CRMs, particularly those that alter the timing of gene expression, might explain the molecular origins of birth defects and diseases that have not been previously linked to mutations in protein-coding regions," says Dr. Di Gregorio.

Explore further: Algorithm reveals complex protein dynamics behind gene expression

More information: Katikala L, Aihara H, Passamaneck YJ, Gazdoiu S, Jose´-Edwards DS, et al. (2013) Functional Brachyury Binding Sites Establish a Temporal Read-out of Gene Expression in the Ciona Notochord. PLoS Biol 11(10): e1001697. DOI: 10.1371/journal.pbio.1001697

Related Stories

New type of genetic change identified in inherited cancer

Oct 04, 2009

Duke University Medical Center and National Cancer Institute scientists have discovered that a novel genetic alteration - a second copy of an entire gene - is a cause of familial chordoma, an uncommon form of cancer arising ...

Genetic switches play big role in human evolution

Jun 12, 2013

(Phys.org) —A Cornell study offers further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles ...

Researchers use light to switch on gene expression

May 10, 2012

Imagine being able to control genetic expression by flipping a light switch. Researchers at North Carolina State University are using light-activated molecules to turn gene expression on and off. Their method enables greater ...

Recommended for you

Fighting bacteria—with viruses

23 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

beleg
not rated yet Oct 30, 2013
Kudos WCMC researchers.
When is late too late?