Extracting energy from bacteria

Oct 29, 2013

Most of us wouldn't consider bacteria a promising energy source of the future. That would be shortsighted, says Leonard Tender, a microbial-electrochemist at the Naval Research Laboratory in Washington, D.C., who believes that the focus of his research – electrode reactions catalyzed by microorganisms – may one day provide cheap, clean and abundant energy by converting the carbon dioxide in seawater to fuel and the organic matter in wastewater into electrical power.

Tender will discuss the latest aspects of his research on microbial catalysts (MECs) during the AVS 60th International Symposium & Exhibition, which will be held Oct. 27-Nov. 1, 2013, in Long Beach, Calif.

Dissimilatory metal-reducing bacteria (DRMB) are a fascinating group of microorganisms inhabiting a wide variety of environments including marine sediments and sewage. Tender says that DRMBs acquire energy by coupling oxidation of – and the accompanying loss of electrons by – organic material with reduction of – and the gain of electrons by – insoluble oxidants such as mineral deposits. This ability, he explains, requires the bacteria to transport respired (lost) electrons to their outer surface where they become available for transfer to the insoluble oxidant. The process, known as extracellular electron transfer (EET), has been exploited by Tender and others to create a biological anode catalysts.

"For example, we can grow Geobacter sulfurreducens, a common DRMB, as a multi-cell thick biofilm on the surface of an electrode," Tender says. "Electrons are then transported by EET from the cells through the biofilm to the underlying anode surface of the electrode which results in the generation of electric current."

Just how electrons are transported through the biofilm to the anode surface over distances that can exceed 20 microns remains unsolved, Tender says. "Current evidence suggests that it occurs by incoherent multistep '' across a network of immobile cytochromes at the outer membrane or extracellular region, and not surprisingly, G. sulfurreducens expresses these cytochromes in both locations," he says. "We are currently studying the rate of electron flow through biofilms grown across a gap separating two electrodes—a method known as electrochemical gate measurement—and using Raman spectroscopy to monitor the oxidation state of the cytochromes in the biofilms to see if the electron hopping model is validated."

So far, Tender reports, the data indicate yes. "Our gate measurements reveal a set of highly resolved peaks in plots of current through the biofilms vs. potentials applied to the electrode representing indicative of a electron hopping from cytochrome to cytochrome," he says.

If microbial electrode catalysts can be successfully implemented in the future, Tender says, the payoff would be the ability to generate unlimited amounts of energy from the in seawater and sunlight. "In theory, it could be done by using an electrode to supply electrons to a microbial biofilm that reduces CO2 to organic carbon," he says. "Once can imagine a large refinery that is solar powered, sucks in seawater or sewage, and makes fuel or electricity."

"In fact, we believe that as long as a marine or wastewater environment can continuously supply the organic material and the oxidant to the MEC, it could run almost endlessly," Tender says.

Explore further: Bio-electrochemical systems: Electricity generators of the future?

More information: Presentation EN-TuM9, "Microorganisms: Self-assembling, Self-wiring, Engineerable Electrode Catalysts," is at 10:40 a.m. Pacific Time on Tuesday, Oct. 29, 2013.

add to favorites email to friend print save as pdf

Related Stories

Bacteria use hydrogen, carbon dioxide to produce electricity

May 20, 2013

Researchers have engineered a strain of electricity-producing bacteria that can grow using hydrogen gas as its sole electron donor and carbon dioxide as its sole source of carbon. Researchers at the University of Massachusetts, ...

Wiring microbes to conduct and produce electricity faster

Sep 04, 2013

A team of researchers in Ireland have found evidence that altering the chemistry of an electrode surface (surface engineering) can help microbial communities to connect to the electrode to produce more electricity ...

Recommended for you

New material steals oxygen from the air

2 hours ago

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

Neutral self-assembling peptide hydrogel

6 hours ago

Self-assembling peptides are characterized by a stable β-sheet structure and are known to undergo self-assembly into nanofibers that could further form a hydrogel. Self-assembling peptide hydrogels have ...

Scientists make droplets move on their own

Sep 29, 2014

Droplets are simple spheres of fluid, not normally considered capable of doing anything on their own. But now researchers have made droplets of alcohol move through water. In the future, such moving droplets may deliver medicines, ...

User comments : 0