Droplets get a charge out of jumping

Oct 02, 2013 by David Chandler
Images such as this, showing droplets being shed from a superhydrophobic surface (light band at center), revealed the charging of the droplets. Credit: Nenad Miljkovic

In a completely unexpected finding, MIT researchers have discovered that tiny water droplets that form on a superhydrophobic surface, and then "jump" away from that surface, carry an electric charge. The finding could lead to more efficient power plants and a new way of drawing power from the atmosphere, they say.

The finding is reported in a paper in the journal Nature Communications written by MIT postdoc Nenad Miljkovic, mechanical engineering professor Evelyn Wang, and two others.

Miljkovic says this was an extension of previous work by the MIT team. That work showed that under certain conditions, rather than simply sliding down and separating from a surface due to gravity, droplets can actually leap away from it. This occurs when droplets of water condense onto a metal surface with a specific kind of superhydrophobic coating and at least two of the droplets coalesce: They can then spontaneously jump from the surface, as a result of a release of excess surface energy.

In the new work, "We found that when these droplets jump, through analysis of high-speed video, we saw that they repel one another midflight," Miljkovic says. "Previous studies have shown no such effect. When we first saw that, we were intrigued."

In order to understand the reason for the repulsion between jumping droplets after they leave the surface, the researchers performed a series of experiments using a charged electrode. Sure enough, when the electrode had a positive charge, droplets were repelled by it as well as by each other; when it had a negative charge, the droplets were drawn toward it. This established that the effect was caused by a net positive electrical charge forming on the droplets as they jumped away from the surface.

The charging process takes place because as droplets form on a surface, Miljkovic says, they naturally form an electric double layer—a layer of paired positive and negative charges—on their surfaces. When neighboring drops coalesce, which leads to their jumping from the surface, that process happens "so fast that the charge separates," he says. "It leaves a bit of charge on the droplet, and the rest on the surface."

The initial finding that droplets could jump from a condenser surface—a component at the heart of most of the world's electricity-generating power plants—provided a mechanism for enhancing the efficiency of on those condensers, and thus improving ' overall efficiency. The new finding now provides a way of enhancing that efficiency even more: By applying the appropriate charge to a nearby metal plate, jumping droplets can be pulled away from the surface, reducing the likelihood of their being pushed back onto the condenser either by gravity or by the drag created by the flow of the surrounding vapor toward the surface, Miljkovic says.

"Now we can use an external electric field to mitigate" any tendency of the droplets to return to the condenser, "and enhance the heat transfer," he says.

But the finding also suggests another possible new application, Miljkovic says: By placing two parallel metal plates out in the open, with "one surface that has droplets jumping, and another that collects them … you could generate some power" just from condensation from the ambient air. All that would be needed is a way of keeping the condenser surface cool, such as water from a nearby lake or river. "You just need a cold in a moist environment," he says. "We're working on demonstrating this concept."

Jonathan Boreyko, a postdoc at Oak Ridge National Laboratory who was not connected with this research, says that while jumping droplets on superhydrophobic surfaces have been known for a few years, "the fact that the jumping exhibit a net charge was completely unknown until this report. … It is my impression that this work is of very high quality and will have a large impact on the rapidly evolving field of phase-change heat transfer on nanostructured surfaces."

Explore further: Better droplet condensation could boost power efficiency

More information: www.nature.com/ncomms/2013/130927/ncomms3517/full/ncomms3517.html

Related Stories

Jumping droplets help heat transfer

Jan 03, 2013

Many industrial plants depend on water vapor condensing on metal plates: In power plants, the resulting water is then returned to a boiler to be vaporized again; in desalination plants, it yields a supply of clean water. ...

Better droplet condensation could boost power efficiency

Jun 24, 2013

Researchers at MIT have developed an innovative approach to improving heat transfer in power plants and cooling systems. The new system could provide a 100 percent improvement in the efficiency of heat transfer over conventional ...

Explained: Hydrophobic and hydrophilic

Jul 16, 2013

Sometimes water spreads evenly when it hits a surface; sometimes it beads into tiny droplets. While people have noticed these differences since ancient times, a better understanding of these properties, and ...

'Sticky tape' for water droplets mimics rose petal

Sep 17, 2013

(Phys.org) —A new nanostructured material with applications that could include reducing condensation in airplane cabins and enabling certain medical tests without the need for high tech laboratories has been developed by ...

Recommended for you

Better thermal-imaging lens from waste sulfur

5 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Oct 02, 2013
Might there be some way to use a charge (without access to a source of reduced heat like cold water) to force condensation at temperatures and humidity levels where it would not usually happen?

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...