Researchers find a way to predict 'dragon kings' in small circuits

Oct 30, 2013 by Bob Yirka report
Researchers find a way to predict 'dragon kings' in small circuits
Appearance of dragon-kings. Bubble event-size probability density function (PDF) for c = 4.4. The dashed line is a fit to a power law. Credit: arXiv:1301.0244 [nlin.CD]

( —A research team with members from Switzerland, the U.S. and Brazil has discovered a way to predict and circumvent "dragon kings" that appear in a synchronized master-slave circuit system that occasionally become unsynchronized. They have uploaded a paper they've written describing their system and results to the preprint server arXiv—later to be published in the journal Physical Review Letters.

Dragon kings (the term came about as a means to describe wealth distribution in medieval times) are large unexpected events that occur in complex systems. Earthquakes, stock-market crashes and even the abnormal population growth of Paris are some common examples. For obvious reasons, scientists and others have been studying such events to try to figure out if they can be predicted, and if so, if some of them at least, can be prevented.

In this latest effort, the researchers weren't studying dragon kings, they were simply trying to better understand a circuit anomaly—a master/slave circuit connected together in a way that was supposed to keep the two synchronized with one another. The problem was, sometimes the two would occasionally go completely out of whack. In studying the circuit they discovered that it was very small occasional misses in the synchronizing process that led to bigger and bigger misses until the became completely unsynchronized. Further study showed that making a minor adjustment to the system just before it went out of whack prevented the big event from occurring. Later analysis of the properties of the big event showed that it followed the definition of a dragon king. This has led the researchers to suggest that if such variables as were found in the circuit system could be identified in other systems, it seems reasonable to conclude that large random fluctuations might be predicted and in some cases prevented, in them as well.

That's a pretty big jump the researchers acknowledge—other systems are not only far more complex but have some variables beyond human control, such as those that lead to earthquakes or the amount of money investors have available to spend. But, because they were able to predict a dragon king in a circuit, it shows it can be done, at least in one system. That alone is enough to offer hope that similar analysis of other systems might lead to the same ability in some others.

Explore further: Breakthrough in OLED technology

More information: Predictability and suppression of extreme events in complex systems, arXiv:1301.0244 [nlin.CD]

In many complex systems, large events are believed to follow power-law, scale-free probability distributions, so that the extreme, catastrophic events are unpredictable. Here, we study coupled chaotic oscillators that display extreme events. The mechanism responsible for the rare, largest events makes them distinct and their distribution deviates from a power-law. Based on this mechanism identification, we show that it is possible to forecast in real time an impending extreme event. Once forecasted, we also show that extreme events can be suppressed by applying tiny perturbations to the system.

Related Stories

Video: Dragon grappled and berthed at Space Station

Mar 04, 2013

SpaceX's Dragon spacecraft has arrived at the International Space Station. After overcoming a problem with its thrusters after reaching orbit on on Friday, today, Dragon successfully approached the Station, w ...

Recommended for you

Breakthrough in OLED technology

12 hours ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

15 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.