New discovery should save wheat farmers millions of dollars

Oct 09, 2013
This image shows a sprouted spike of wheat. Credit: Harpinder Randhawa

The global wheat industry sometimes loses as much as $1 billion a year because prolonged rainfall and high humidity contribute to grains germinating before they are fully mature. The result is both a lower yield of wheat and grains of inferior quality. This phenomenon, known as pre-harvest sprouting or PHS, has such important economic repercussions for farmers around the world that scientists have been working on finding a solution to the problem for at least a couple of decades. Their focus has been on genetic factors, and on the interaction between genotypes and the environment as they have tried to breed wheat that is resistant to PHS, but with little success so far.

But now, findings by a McGill team suggest that the solution may lie not with genetics alone, but rather with a combination of genetic and epigenetic factors. The team, led by Prof. Jaswinder Singh of McGill's Department of Plant Science, has identified a key gene that acts as a switch to determine how a particular plant will respond to and excess rainfall by either germinating early (PHS) or not. This switch is to be found in a key gene, ARGONAUTE4_9, in the "RNA dependent DNA Methylation" pathway (RdDM).

"The complex RdDM machinery is composed of several proteins that guide the genome in response to growth, developmental and stress signals. It's a bit like the plant's brain," says Singh. "Although in the past scientists have identified it as the pathway that regulates the way a variety of genes are expressed, until now no one had made the link with PHS."

The McGill team made the discovery by using a variety of genomic and molecular tools to identify specific ARGONAUTE4_-9 genes, and then compare the way that these genes are expressed in PHS resistant versus PHS susceptible varieties of wheat.

"This discovery is important for other cereals like barley as well as for wheat," said Surinder Singh, a Ph.D. student and one of the authors of this study, currently working in Professor Singh's laboratory. "This means that not only should we be able to avoid the ugly bread and sticky crumbs produced by PHS wheat in future, we should also end up with better beer. "

The research opens up a whole new area of exploration for scientists as they try to increase the yields of and decrease losses due to excessively humid conditions. It should also save farmers and governments around the world significant amounts of money in the future.

Explore further: Iberian pig genome remains unchanged after five centuries

More information: The study, "Polymorphic homoeolog of key gene of RdDM pathway, ARGONAUTE4_-9 class is associated with Pre-harvest Sprouting in wheat (Triticum aestivum L.)" was just published in the journal PLOS ONE. To read the full article: dx.plos.org/10.1371/journal.pone.0077009

add to favorites email to friend print save as pdf

Related Stories

Resistance gene found against Ug99 wheat stem rust pathogen

Jun 27, 2013

The world's food supply got a little more plentiful thanks to a scientific breakthrough. Eduard Akhunov, associate professor of plant pathology at Kansas State University, and his colleague, Jorge Dubcovsky from the University ...

Recommended for you

Iberian pig genome remains unchanged after five centuries

20 hours ago

A team of Spanish researchers have obtained the first partial genome sequence of an ancient pig. Extracted from a sixteenth century pig found at the site of the Montsoriu Castle in Girona, the data obtained indicates that ...

New concepts based on advances in animal systematics

23 hours ago

The way in which most multicellular organisms have been classified has been the same for more than a century. Only recently have scientists developed the tools and knowledge to question the way we classify ...

New dawn for pasta wheat in Australia

Sep 17, 2014

The University of Adelaide's durum breeding program today at the Hart Field Day will release a new durum wheat variety called DBA-Aurora which promises a step-change in potential durum production in southern Australia.

User comments : 0