Study suggests common pesticide clothianidin causes immunity problems in bees

October 22, 2013 by Bob Yirka report
bees

(Phys.org) —A team of researchers with members from several universities in Italy has found that exposure to the common pesticide clothianidin can cause immunity problems in honeybees, leading to an increased risk of dying from common viral infections. In their paper published in Proceedings of the National Academy of Sciences, the researchers found that exposure to clothianidin resulted in an increase in a family of proteins that inhibit the development of other proteins that are involved in the immune process.

Headlines over the past couple of years have made it very clear that something is causing to die in unexplained ways. Whole colonies suddenly die, with no clear explanation. Now known as Colony Collapse Disorder (CCD), the problem has reached the point of panic as honeybees are the chief means for pollination of crops around the world. At this point, scientists suspect that the disorder involves something that is causing the immune system in the to break down, leaving them unable to fight off bacteria and viruses. In this new effort, the research team contends that they've found one of the missing links—a single pesticide that causes bees exposed to it, to develop immunity problems.

In their lab, the researchers started by isolating a family of proteins (called LRR) that are similar to other proteins found in other animals that are known to regulate immune response—specifically, its presence, they found, causes another protein (NF-κB) directly involved in immune response, to be inhibited. Next, they exposed honeybees to the pesticide clothianidin and subsequently measured gene expression and levels in them. They found an increase in the expression of the gene responsible for LRR levels and lowered levels of NF-κB, which the researchers claim, suggests a direct link between exposure to the toxin and a damaged . The researchers ran the same tests on bees exposed to another pesticide— chlorpyriphos—and found no ill effects, which they suggest means CCD might be caused by one or a just a few pesticides. Next, the researchers exposed the bees that had been exposed to clothianidin to a pathogen called the deformed wing virus. Normally, healthy bees show resistance to the virus and are not impacted by it. After exposure to clothianidin, however, the researchers found the virus was able to reproduce in the bees, suggesting the bee's had been compromised.

Explore further: Use of imidacloprid - common pesticide - linked to bee colony collapse

More information: Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees, PNAS, Published online before print October 21, 2013, DOI: 10.1073/pnas.1314923110

Abstract
Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

Related Stories

Pesticide combination affects bees' ability to learn

March 27, 2013

Two new studies have highlighted a negative impact on bees' ability to learn following exposure to a combination of pesticides commonly used in agriculture. The researchers found that the pesticides, used in the research ...

The real reason to worry about bees

September 10, 2013

Honeybees should be on everyone's worry list, and not because of the risk of a nasty sting, an expert on the health of those beneficial insects said here today at the 246th National Meeting & Exposition of the American Chemical ...

Stress a key factor in causing bee colonies to fail

October 7, 2013

Scientists from Royal Holloway University have found that when bees are exposed to low levels of neonicotinoid pesticides - which do not directly kill bees - their behaviour changes and they stop working properly for their ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Expiorer
1 / 5 (6) Oct 22, 2013
And I was thinking they just like to die.
PPihkala
2.3 / 5 (3) Oct 22, 2013
A good reason to ban the unhealthy insecticides.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.