Combining profiling and genomics yields novel metabolites

Oct 22, 2013
Combining profiling and genomics yields novel metabolites
Cyanobacteria produce numerous metabolic compounds, many of which have not yet been characterized or linked to specific genes.

Researchers studied 10 different cyanobacteria to identify their secondary metabolites (compounds produced during normal cellular metabolism not directly involved in cell growth, that may play an important role in interactions outside the cell) and the genes linked to those molecules.

Understanding the of cyanobacteria is an essential step for using them to produce biofuels, but those pathways are not well understood. The researchers identified numerous compounds associated with cyanobacteria metabolism, more than half of which were previously unknown, and found linked genes for several of them.

The team examined 10 diverse cyanobacteria species, detecting 264 different . The researchers used a technique called tandem mass spectrometry, where a relatively large molecule of interest is isolated, smashed into smaller bits which are analyzed chemically and finally, the information gathered about the bits is used to understand the whole molecule. The cyanobacteria genes and synthesis pathways were identified using the data and tools in the DOE JGI's Integrated Microbial Genomes database.

This study builds on a previous finding of unexpected metabolites, including histidine betaine and its derivatives, first identified in a cyanobacteria species in 2010 by first author, Richard Baran. "We wondered if it was present in other cyanobacteria and whether we could link them back to specific genes," Baran said.

The multi-institution team, led by Trent Northen, Berkeley Lab Life Sciences Division Staff Scientist and a recent addition to the DOE JGI staff, published its results in the journal, Marine Drugs, on September 30. The project is another example of the DOE JGI's goal to expand its capacity, in alignment with its 10-Year Vision for understanding metabolic pathways of plant, fungal and microbes.

The team found betaines in nine of the 10 cyanobacteria studied. Another surprising finding was that one of the cyanobacteria, Microcoleus vaginatus, produced a series of unusual sugar polymers. M. vaginatus lives in soil crusts, soils in arid climates held together by organic material and microorganisms. Baran and Northen speculate M. vaginatus excretes the carbohydrates to contribute to the soil crust.

Corresponding genes were identified for several of the compounds researchers studied, but they were unable to link specific genes to most of the metabolites because the pool of 10 species studied was not large enough. They suggest that scaling up an effort like this one to include more strains would not only identify many more novel metabolites, but make it possible to identify the that control their production. They are planning next to study how metabolites contribute to the food web around them and are used by neighboring organisms.

Explore further: Sun, water, CO2 and algae: A recipe for biofuel?

More information: Baran R, et al, Functional Genomics of Novel Secondary Metabolites from Diverse Cyanobacteria Using Untargeted Metabolomics, Marine Drugs, 2013; 11(10):3617-3631. DOI: 10.3390/md11103617

add to favorites email to friend print save as pdf

Related Stories

Study uncovers secrets of biological soil crusts

Jun 14, 2013

They lie dormant for years, but at the first sign of favorable conditions they awaken. This sounds like the tagline for a science fiction movie, but it describes the amazing life-cycles of microbial organisms ...

Sun, water, CO2 and algae: A recipe for biofuel?

Sep 25, 2013

Plant-based biofuels were initially hailed as the answer to all problems posed by traditional fossil fuels. Supply is unlimited and they are also neutral to emissions harmful to the environment also. But ...

Multicellularity: A key event in the evolution of life

Jan 16, 2013

(Phys.org)—Multicellularity in cyanobacteria originated before 2.4 billion years ago and is associated with the accumulation of atmospheric oxygen, subsequently enabling the evolution of aerobic life, as ...

Recommended for you

Researchers discover new strategy germs use to invade cells

15 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

16 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0