Researchers make a case for free fatty acids

Oct 22, 2013

The current global epidemic of obesity-linked diabetes and its associated consequences -cardiovascular, neurological and renal diseases - is a growing public health problem for which therapeutic options are limited.

In obesity, fatty acids, derived mostly from adipose tissue, alter lipid metabolism in other tissues such as liver and skeletal muscles. Both impaired fatty acid metabolism and glucose are hallmarks of diabetes.

In a recent study in the journal Biochemistry, a research group led by James A. Hamilton, PhD, professor of physiology, biophysics and radiology at Boston University School of Medicine (BUSM), applied novel fluorescent methods to measure the rate by which fatty acids bind to and move across the fatty acid membrane to become metabolized.

"Our study shows that fatty acid entry into cells occurs by diffusion without catalysis by a previously described as a fatty acid transport protein. However, this protein promotes intracellular metabolism and storage," said Hamilton. "With this advance in basic science, new drugs can be designed that target the exact mechanism more precisely than currently available drugs."

Previous research has shown that glucose transport under the control of insulin is mediated by a called GLUT4. However, how fatty acids enter into cells has been an important unsolved problem, especially whether there are gatekeeper plasma membrane proteins that regulate fatty acid translocation across the membrane, thereby controlling the supply of fatty acids to the interior of the cell. Although several proteins postulated to be fatty acid transporters have now been shown to have other roles, the mechanistic roles of the protein CD36 have remained elusive and are widely debated.

After measuring the products of fatty acid metabolism over time, the researchers found that CD36 enhances into triglycerides (fat deposits), without increasing fatty acid translocation across the membrane in a cell line that does not normally synthesize triglycerides. Thus, CD36 increases fatty acid uptake by increasing intracellular metabolism, which promotes diffusion of into cells.

Explore further: High serum omega-3 polyunsaturated fatty acid content protects against brain abnormalities

add to favorites email to friend print save as pdf

Related Stories

Gene links obesity and immunity

Aug 16, 2013

Auckland scientists have discovered a gene that links the immune system with obesity and potentially a new pathway to fight the worldwide obesity epidemic.

Insulin secretion disrupted by increased fatty acids

Sep 09, 2013

Patients with type 2 diabetes have increased levels of circulating glucose and fatty acids, which lead to disease complications. In healthy individuals, β cells within pancreatic islets release insulin in response to glucose ...

Fatty acids could aid cancer prevention and treatment

Aug 01, 2013

Omega-3 fatty acids, contained in oily fish such as salmon and trout, selectively inhibit growth and induce cell death in early and late-stage oral and skin cancers, according to new research from scientists ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

User comments : 0