Researchers apply brainpower to understanding neural stem cell differentiation

Oct 24, 2013
In the neural stem cells at the left, the protein SMEK1 (red) is localized in the nucleus (blue), while the protein PAR3 (green) is in the cytoplasm. When neural stem cells divide, as in the cells at the right, SMEK1 moves to the cytoplasm, where it regulates PAR's activity. Credit: Wange Lu

How do humans and other mammals get so brainy? USC researcher Wange Lu, PhD, and his colleagues shed new light on this question in a paper that will be published in Cell Reports on October 24.

The researchers donned their thinking caps to explain how neural stem and progenitor differentiate into and related cells called glia. Neurons transmit information through electrical and chemical signals; glia surround, support and protect neurons in the brain and throughout the nervous system. Glia do everything from holding neurons in place to supplying them with nutrients and oxygen to protecting them from pathogens.

By studying early mouse embryo neural in a petri dish, Lu and his colleagues discovered that a protein called SMEK1 promotes the differentiation of neural stem and progenitor cells. At the same time, SMEK1 keeps these cells in check by suppressing their uncontrolled proliferation.

The researchers also determined that SMEK1 doesn't act alone: it works in concert with Protein Phosphatase 4 to suppress the activity of a third protein called PAR3 that discourages neurogenesis, or the birth of new neurons. With PAR3 out of the picture, and progenitors are free to differentiate into new neurons and glia.

"These studies reveal the mechanisms of how the brain keeps the balance of stem cells and neurons when the brain is formed," said Wange Lu, associate professor of biochemistry and molecular biology at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. "If this process goes wrong, it leads to cancer, or mental retardation or other neurological diseases."

Neural stem and offer tremendous promise as a future treatment for neurodegenerative disorders, and understanding their differentiation is the first step towards harnessing this therapeutic potential. This could offer new hope for patients with Alzheimer's, Parkinson's and many other currently incurable diseases.

Explore further: Study points to possible treatment for brain disorders

Related Stories

What decides neural stem cell fate?

May 05, 2011

Researchers at Sanford-Burnham Medical Research Institute and their collaborators found that expression of a gene called SOX2 maintains the potential for neural crest stem cells to become neurons in the peripheral nervous ...

Recommended for you

DNA may have had humble beginnings as nutrient carrier

8 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

8 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0