The benefits of bacteria for gut health

Oct 18, 2013

Scientists from the Emory University School of Medicine in Atlanta, United States have shown that specific gut bacteria are beneficial for maintaining a healthy intestine in the fruit fly Drosophila and mice and also contribute to the overall health of these organisms. The researchers demonstrated that bacteria in the gut, particularly members of the genus Lactobacillus, promote the growth of host epithelial cells and that this is essential for maintaining homeostasis in the intestinal system. The findings, which are published today in The EMBO Journal, could have implications for the treatment of inflammatory bowel disease as well as allergic, metabolic and infectious disorders.

"It is well-known that mammals live in a homeostatic symbiosis with their microbiota and that they influence a wide range of physiological processes. However, the molecular mechanisms of the symbiotic cross-talk in the gut are largely unrecognized," stated Andrew S. Neish, Professor at the Emory University School of Medicine, who led the research. "In our study, we have discovered that Lactobacilli can stimulate reactive oxygen species that have regulatory effects on intestinal stem cells, including the activation of proliferation of these cells."

Using two different animal models, the researchers showed that the highly conserved underlying mechanism of this symbiotic relationship is the production of (ROS), by a class of conserved enzymes called NADPH oxidases or Nox'es. When animal guts were colonized by Lactobacillus, ROS production caused cell growth in intestinal stem cells. In contrast, in germ-free animals ROS production was absent and resulted in suppressed growth of . Lead author Rheinallt M. Jones, commented: "Our data support the concept of commensal bacterial-induced generation of ROS as a transducer of bacterial signals into host cell signaling, thus establishing a mechanism for host/bacterial cross-talk."

In addition, the study suggests that specific redox-mediated functions may contribute to the identification of further microbes with probiotic potential. The researchers also suggest that the primordial ancestral response to bacteria may well be the generation of ROS for signaling and microbicidal activities.

Explore further: Researchers develop computational model to simulate bacterial behavior

More information: Symbiotic Lactobacilli Stimulate Gut Epithelial Proliferation via Noxmediated Generation of Reactive Oxygen Species, Rheinallt M. Jones, Liping Luo, Courtney S. Ardita, Arena N. Richardson, Young Man Kwon, Jeffrey W. Mercante, Ashfaqul Alam, Cymone L. Gates, Huixia Wu, Phillip A. Swanson, J. David Lambeth, Patricia W. Denning and Andrew S. Neish, www.nature.com/emboj/journal/v… l/emboj2013224a.html

Related Stories

How to achieve a well-balanced gut

Aug 08, 2013

Creating an environment that nurtures the trillions of beneficial microbes in our gut and, at the same time, protects us against invasion by food-borne pathogens is a challenge. A study published on August ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

12 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

15 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

16 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.