Direct 'writing' of artificial cell membranes on graphene

October 10, 2013
Lipid membranes can be directly "written" on graphene with a nano-scale dip-pen. Credit: The University of Manchester

Graphene emerges as a versatile new surface to assemble model cell membranes mimicking those in the human body, with potential for applications in sensors for understanding biological processes, disease detection and drug screening.

Writing in Nature Communications, researchers at The University of Manchester led by Dr Aravind Vijayaraghavan, and Dr Michael Hirtz at the Karlsruhe Institute of Technology (KIT), have demonstrated that membranes can be directly 'written' on to a surface using a technique known as Lipid Dip-Pen Nanolithography (L-DPN).

The human body contains 100 trillion cells, each of which is enveloped in a cell which is essentially a phospholipid bi-layer membrane. These cell membranes have a plethora of proteins, ion channels and other molecules embedded in them, each performing vital functions.

It is essential, therefore, to study and understand these systems, thereby enabling their application in areas such as bio-sensing, bio-catalysis and drug-delivery. Considering that it is difficult to accomplish this by studying live cells inside the , scientists have developed model cell membranes on surfaces outside the body, to study the systems and processes under more convenient and accessible conditions.

Dr Vijayaraghavan's team at Manchester and their collaborators at KIT have shown that graphene is an exciting new surface on which to assemble these model membranes, and brings many advantages compared to existing surfaces.

Dr Vijayaraghavan said: "Firstly, the lipids spread uniformly on graphene to form high-quality membranes. Graphene has unique electronic properties; it is a semi-metal with tuneable conductivity.

"When the lipids contain binding sites such as the enzyme called biotin, we show that it actively binds with a protein called streptavidin. Also, when we use charged lipids, there is charge transfer from the lipids into graphene which changes the doping level in graphene. All of these together can be exploited to produce new types of graphene/lipids based bio-sensors."

Dr. Michael Hirtz (KIT) explains the L-DPN technique: "The technique utilizes a very sharp tip with an apex in the range of several nanometers as a means to write membranes onto surfaces in a way similar to what a quill pen does with ink on paper. The small size of the tip and the precision machine controlling it allows of course for much smaller patterns, smaller than cells, and even right down to the nanoscale."

"By employing arrays of these tips multiple different mixtures of lipids can be written in parallel, allowing for sub-cellular sized patterns with diverse chemical composition."

Explore further: Graphene: Potential for modelling cell membrane systems

More information: The paper, Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography by M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs & A. Vijayaraghavan will appear in Nature Communications, DOI: 10.1038/ncomms3591

Related Stories

Graphene: Potential for modelling cell membrane systems

March 22, 2012

At Toyohashi University of Technology the intriguing properties of graphene—a single atomic-layer of carbon—such as high electron mobility and fluorescence quenching are being exploited for biosensing and analysis ...

Laying down a discerning membrane

October 4, 2013

One of the thinnest membranes ever made is also highly discriminating when it comes to the molecules going through it. Engineers at the University of South Carolina have constructed a graphene oxide membrane less than 2 nanometers ...

'Tense' graphene joins forces with gold nano-antennas

October 4, 2013

(Phys.org)—Graphene can be used to investigate how light interacts with nano-antennas, potentially increasing the efficiency of solar cells and photo detectors, University of Manchester researchers have found.

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.