A selective approach to draw data from altered foraminifera shells

October 9, 2013

A sudden surge in the concentration of carbon dioxide in the air and the ocean 56 million years ago may have triggered the Paleocene-Eocene thermal maximum (PETM), a period of rapid and dramatic warming. In conjunction with the rising atmospheric temperature, ocean acidification significantly increased the dissolution, or "burndown," of carbonate sediments on the seafloor, destroying the preservation quality of seafloor foraminifera shells. Analyzing foraminifera shells is one of the main proxy measurements used by paleoclimatologists to reconstruct past ocean temperatures. Kozdon et al., however, find that by using two highly precise analytical techniques, they can draw useful data from foraminifera samples that were damaged by the burndown.

When single-celled foraminifera die, their calcite sink to the seafloor. Locked inside are records of the environmental conditions when the foraminifera formed their shells, indicated by the and the concentrations of various elements. The burndown caused many of these shells to fully or partially dissolve. When the warm period ended, the dissolved carbonate reprecipitated on the remaining shells, but with new, different isotope ratios.

Traditionally, researchers studying the isotope ratios of shells use an analytical technique that consumes the whole shell. As such, the recrystallization from the PETM burndown would skew their results. The authors of the present study, however, used two highly selective techniques, secondary ion mass spectrometry and electron probe microanalysis, to measure the compositions of small preserved fragments of individual shells. The techniques allowed them to measure the isotope ratios of the parts of the shells that were unaffected by recrystallization and to compare original shell material against recrystallized regions within the same shell.

Explore further: Seafloor Fossils Provide Clues on Climate Change

More information: Kozdon, R. et al. In situ ?18 O and Mg/Ca Analyses of Diagenetic and Planktic Foraminiferal Calcite Preserved in a Deep-Sea Record of the Paleocene-Eocene Thermal Maximum, Paleoceanography. DOI: 10.1002/palo.20048, 2013 http://onlinelibrary.wiley.com/doi/10.1002/palo.20048/abstract

Related Stories

Seafloor Fossils Provide Clues on Climate Change

October 22, 2009

Deep under the sea, a fossil the size of a sand grain is nestled among a billion of its closest dead relatives. Known as foraminifera, these complex little shells of calcium carbonate can tell you the sea level, temperature, ...

Deep ocean sediment gives ancient temperature record

October 11, 2012

Scientists have created a more accurate history of how Earth's climate has varied over the last 1.5 million years, after developing a new method that lets them draw on natural temperature records that have never before been ...

Tiny foraminifera in oceans can save islands, study finds

February 6, 2013

The climate is getting warmer, and sea levels are rising – a threat to island nations. As a group of researchers lead by colleagues from the University of Bonn found out, at the same time, tiny single-cell organisms are ...

Recommended for you

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.